Advertisement

State-of-the-Art for Nanomanufacturing Using Ion Beam Technology

  • Fengzhou FangEmail author
  • Zongwei Xu
Reference work entry

Abstract

Ion-beam manufacturing is developing toward nanoaccuracy and nanoscale. In this regard, the concept and working principle of ion-beam manufacturing in nanoaccuracy and nanoscale are presented in this chapter. The key techniques for ion-beam manufacturing are discussed with an emphasis on their capabilities in the fabrication of micro-/nano-features. The corresponding typical applications involved in ion-beam manufacturing are provided. The recent developments in ion-beam-related instruments are given as well. Finally, the future trends for ion-beam manufacturing are predicted.

Keywords

Surface Plasmon Polaritons Plasmonic Lens Removal Function Propagate Surface Plasmon Thin Film Substrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The book’s publication is supported by the National Natural Science Foundation of China (No. 90923038, 51275559, 50935001), National Basic Research Program of China (973 Program, Grant No.2011CB706700), Ministry of Industry and Information Technology (No. 2011ZX04014-071), National High Technology Research and Development Program of China (863 Program, Grant No. 2012AA040405), and the “111” project by the State Administration of Foreign Experts Affairs and the Ministry of Education of China (Grant No. B07014).

References

  1. Adams DP, Vasile MJ (2006) Accurate focused ion beam sculpting of silicon using a variable pixel dwell time approach. J Vac Sci Technol 2:836–844CrossRefGoogle Scholar
  2. Ali MY, Hung W, Fu YQ (2010) A review of focused Ion beam sputtering. Int J Precis Eng Manuf 11:157–170CrossRefGoogle Scholar
  3. Arshak K, Mihov M, Arshak A, McDonagh D, Sutton D (2004) Novel dry-developed focused ion beam lithography scheme for nanostructure applications. Microelectron Eng 73–74:144–151CrossRefGoogle Scholar
  4. Bahns JT, Imre A, Vlasko-Vlasov VK, Pearson J, Hiller JM, Chen LH, Welp U (2007) Enhanced Raman scattering from focused surface plasmons. Appl Phys Lett 91:081104CrossRefGoogle Scholar
  5. Caturla M, Rubia TD, Marqués LA, Gilmer GH (1996) Ion-beam processing of silicon at keV energies: a molecular-dynamics study. Phys Rev B Condens Matter 54:16683–16695CrossRefGoogle Scholar
  6. Chih JL, Aref T, Bezryadin A (2006) Fabrication of symmetric sub-5 nm nanopores using focused ion and electron beams. Nanotechnology 17:3264–3267CrossRefGoogle Scholar
  7. Chiu NHL, Christopoulos TK (eds) (2012) Advances in immunoassay technology. InTech. pp 180. ISBN 978-953-51-0440-7, doi:10.5772/1967Google Scholar
  8. Coyne E, Zachariasse F (2008) A working method for prototyping solid immersion blazed-phase diffractive optics for near-infrared laser microscopy. J Micromech Microeng 18:045016 9ppCrossRefGoogle Scholar
  9. Ding X, Lim GC, Cheng CK, Butler DL, Shaw KC, Liu K et al (2008) Fabrication of a micro-size diamond tool using a focused ion beam. J Micromech Microeng 18:115013–115024CrossRefGoogle Scholar
  10. Ding X, Butler DL, Lim GC, Cheng CK, Shaw KC, Liu K, Fong WS, Zheng HY (2009) Machining with micro-size single crystalline diamond tools fabricated by a focused ion beam. J Micromech Microeng 19:025005CrossRefGoogle Scholar
  11. Fang FZ, Chen L (2000) Ultra-precision cutting for ZKN7 glass. CIRP Ann Manuf Technol 49/1:17–20CrossRefGoogle Scholar
  12. Fang FZ, Chen YH, Zhang XD, Hu XT, Zhang GX (2011) Nanometric cutting of single crystal silicon surfaces modified by ion implantation. CIRP Ann-Manuf Techn 60(1):527–530Google Scholar
  13. Fang FZ, Venkatesh VC (1998) Diamond cutting of silicon with nanometric finish. CIRP Ann Manuf Technol 47(1):45–49CrossRefMathSciNetGoogle Scholar
  14. Fang FZ, Wu H, Liu YC (2005) Modeling and investigation on machining mechanism of nano-cutting monocrystalline silicon. Int J Mach Tool Manuf 45:1681–1686CrossRefGoogle Scholar
  15. Fang FZ, Wu H, Zhou W, Hu XT (2007) A study on mechanism of nano-cutting single crystal silicon. J Mater Process Technol 184:407–410CrossRefGoogle Scholar
  16. Fang FZ, Xu ZW, Hu XT (2009) Fabrication and configuration of carbon nanotube probes in atomic force microscopy. CIRP Ann Manuf Technol 58(1):455–458CrossRefGoogle Scholar
  17. Fang FZ, Xu ZW, Hu XT, Wang CT, Luo XG, Fu YQ (2010) Nano-photomask fabrication using focused ion beam direct writing. CIRP Ann Manuf Technol 59(1):543–546CrossRefGoogle Scholar
  18. Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26(2):163–166CrossRefGoogle Scholar
  19. Frey L, Lehrer C, Ryssel H (2003) Nanoscale effects in focused ion beam processing. Appl Phys A Mater Sci Process 76:1017–1023CrossRefGoogle Scholar
  20. Fu YQ, Bryan NKA (2004) Fabrication of three-dimensional microstructures by two-dimensional slice by slice approaching via focused ion beam milling. J Vac Sci Technol 22:1672–1678CrossRefGoogle Scholar
  21. Fu YQ, Liu Y, Zhou XL, Xu ZW, Fang FZ (2010) Experimental investigation of superfocusing of plasmonic lens with chirped circular nanoslits. Opt Express, 18(4):3438–3443CrossRefGoogle Scholar
  22. Fu Y, Zhou X (2010) Plasmonic lenses: A review, Plasmonics 5(3):287–310CrossRefGoogle Scholar
  23. Fujii A, Suzuki H, Yanagi K (2011) Development of measurement standards for verifying functional performance of surface texture measuring instruments. J Phys Conf Ser 311:012009CrossRefGoogle Scholar
  24. Gao TT, Xu ZW, Fang FZ, Gao WL, Zhang Q, Xu X (2012) High performance surface-enhanced Raman scattering substrates of Si-based Au film developed by focused ion beam nanofabrication. Nanoscale Res Lett 7(1):399CrossRefGoogle Scholar
  25. Giannuzzi LA, Phifer D, Giannuzzi NJ, Capuano MJ (2007) Two-dimensional and 3-dimensional analysis of bone/dental implant interfaces with the use of focused ion beam and electron microscopy. J Oral Maxillofac Surg 65:737–747CrossRefGoogle Scholar
  26. Gianola DS, Sedlmayr A, Mönig RC, Volkert A, Major RC, Cyrankowski E, Asif SAS, Warren OL, Kraft O (2011) In situ nanomechanical testing in focused ion beam and scanning electron microscopes. Rev Sci Insrum 82:063901CrossRefGoogle Scholar
  27. Gierak J (2009) Focused ion beam technology and ultimate applications. Semicond Sci Technol 24:043001CrossRefGoogle Scholar
  28. Grandfield K, Engqvist H (2012) Focused ion beam in the study of biomaterials and biological matter. Adv Mater Sci Eng 2012:841961–841966CrossRefGoogle Scholar
  29. Hernandezramirez F, Rodriguez J, Casals O, Russinyol E, Vila A et al (2006) Characterization of metal-oxide nanosensors fabricated with focused ion beam (FIB). Sens Actuators B 118(1–2):198–203CrossRefGoogle Scholar
  30. Joachim M, Giannuzzi LA, Kamino T, Joseph M (2007) TEM sample preparation and FIB-induced damage. MRS Bull 32:400–407CrossRefGoogle Scholar
  31. Kempshall BW, Schwarz SM, Prenitzer BI, Giannuzzi LA, Irwin RB, Stevie FA (2001) Ion channeling effects on the focused ion beam milling of Cu. J Vac Sci Technol B 19:749–754CrossRefGoogle Scholar
  32. Liang P, Park Y, Xiong Y, Ulin-Avila E, Wang Y, Zeng L, Xiong SM, Rho J, Sun C, Bogy DB, Zhang X (2011) Maskless plasmonic lithography at 22 nm resolution. Sci Rep 1:175Google Scholar
  33. Lin YY, Liao JD, Ju YH, Chang CW, Shiau AL (2011) Focused ion beam-fabricated Au micro/nanostructures used as a surface enhanced Raman scattering-active substrate for trace detection of molecules and influenza virus. Nanotechnology 22:185308CrossRefGoogle Scholar
  34. Liu Y, Fu YQ, Zhou XL, Xu ZW, Fang FZ, Hu XT (2011) Experimental study of indirect phase tuning-based plasmonic structures for finely focusing. Plasmonics 6:227–233CrossRefGoogle Scholar
  35. Loeschner H, Fantner EJ, Korntner R, Platzgummer E, Stengl G, Zeininger M, Baglin JEE, Berger R, Brünger WH, Dietzel A, Baraton M-I, Merhari L (2002) Ion projection direct-structuring for nanotechnology applications. MRS Fall Meeting, BostonGoogle Scholar
  36. Luo XG, Ishihara T (2004) Surface plasmon resonant interference nanolithography technique. Appl Phys Lett 84(23):4780–4782CrossRefGoogle Scholar
  37. Matsui S (2006) Three-dimensional nanostructure fabrication by focused-ion-beam chemical-vapor- deposition. Microsc Microanal 12:130–131CrossRefGoogle Scholar
  38. Menard LD, Ramsey JM (2011) Fabrication of sub-5 nm nanochannels in insulating substrates using focused ion beam milling. Nano Lett 11:512–517CrossRefGoogle Scholar
  39. Michael F, Russo JR, Maazouz M, Giannuzzi LA, Chandler C, Utlaut M, Garrison BJ (2008) Gallium-induced milling of silicon: a computational investigation of focused ion beams. Microsc Microanal 14:315–320CrossRefGoogle Scholar
  40. Min Q, Santos MJL, Girotto EM, Brolo AG, Gordon R (2008) Localized Raman enhancement from a double-hole nanostructure in a metal film. Phys Chem Lett 112:15098–15101CrossRefGoogle Scholar
  41. Mitsuro K, Toshihiko I, Yoshitaka A, Koji S, Takeshi K, Noboru K, Hiroshi J (2007) Three-dimensional structural analysis of a block copolymer by scanning electron microscopy combined with a focused ion beam. J Polym Sci 45:677–683CrossRefGoogle Scholar
  42. Mori Y, Yamamura K, Sano Y (2000) The study of fabrication of the x-ray mirror by numerically controlled plasma chemical vaporization machining: development of the machine for the x-ray mirror fabrication. Rev Sci Instrum 71(12):4620–4626CrossRefGoogle Scholar
  43. Nagase T, Gamo K, Kubota T, Mashiko S (2005) Maskless fabrication of nanoelectrode structures with nanogaps by using Ga focused ion beams. Microelectron Eng 78–79:253–259CrossRefGoogle Scholar
  44. Naik JP, Prewett PD, Das K, Raychaudhuri AK (2011) Instabilities in focused ion beam-patterned Au nanowires. Microelectron Eng 88:2840–2843CrossRefGoogle Scholar
  45. Norman HLC, Theodore KC (2012) Immunoassays using artificial nanopores. In: Chiu NHL (ed) Advances in immunoassay technology. InTech, Croatia, pp 125–140Google Scholar
  46. Pan L, Park Y, Xiong Y, Ulin-Avila E, Wang Y, Zeng L, Xiong S, Rho J, Sun C, Bogy D, Zhang X (2011) Maskless Plasmonic Lithography at 22 nm Resolution. Scientific Reports, 1:175CrossRefGoogle Scholar
  47. Pastewka L, Salzer R, Graff A, Altmann F, Moseler M (2009) Surface amorphization, sputter rate, and intrinsic stresses of silicon during low energy Ga+ focused-ion beam milling. Nucl Instrum Methods Phys Res, Sect B 267:3072–3075CrossRefGoogle Scholar
  48. Picard YN, Adams DP, Vasile MJ (2003) Focused ion beam-shaped microtools for ultra-precision machining of cylindrical components. Precis Eng 27:59–69CrossRefGoogle Scholar
  49. Qian HX, Zhou W, Miao JM, Lim LEN, Zeng XR (2008) Fabrication of Si microstructures using focused ion beam implantation and reactive ion etching. J Micromech Microeng 18:035003CrossRefGoogle Scholar
  50. Reo K, Takayuki H, Kazuhiro K (2005) Three-dimensional high-performance nano-tools fabricated using focused-ion-beam chemical-vapor-deposition. Nucl Instrum Methods Phys 232:362–366CrossRefGoogle Scholar
  51. Reyntjens S, Puers R (2001) A review of focused ion beam applications in microsystem technology. J Micromech Microeng 11:287–300CrossRefGoogle Scholar
  52. Sarvesh KT, Neeraj S, Vishwas NK (2008) Correlation between ion beam parameters and physical characteristics of nanostructures fabricated by focused ion beam. Nucl Instrum Methods Phys Res 266:1468–1474CrossRefGoogle Scholar
  53. Tseng AA (2004) Recent developments in micromilling using focused ion beam technology. J Micromech Microeng 14:R15–R34CrossRefGoogle Scholar
  54. Uram JD, Kevin K, Hunt AJ, Mayer M (2006) Submicrometer pore-based characterization and quantification of antibody–virus interactions. Small 2:967–972CrossRefGoogle Scholar
  55. Utke I, Moshkalev S, Russell P (2012) Nanofabrication using focused ion and electron beams: principles and applications. Oxford University Press, New YorkGoogle Scholar
  56. Volkert CA, Minor AM (2007) Focused ion beam microscopy and micromachining. MRS Bull 32:389–399CrossRefGoogle Scholar
  57. Wang J, Huang L, Yuan L, Zhao LH, Feng XH, Zhang WW, Zhai LP, Zhu J (2011) Silver nanostructure arrays abundant in sub-5 nm gaps as highly Raman-enhancing substrates. Appl Surf Sci 258:3519–3523CrossRefGoogle Scholar
  58. Xia L, Wu W, Xu J, Hao Y, Wang YY (2006) 3D Nanohelix fabrication and 3D nanometer assembly by focused ion beam stress-introducing technique. In: 19th IEEE international conference on micro electro mechanical systems (MEMS 2006), pp 118–121. IstanbulGoogle Scholar
  59. Xu ZW, Fang FZ, Fu YQ, Zhang SJ, Han T, Li JM (2009) Fabrication of micro/nano structures using focused Ion beam implantation and XeF2 gas assisted etching. J Micromech Microeng 19:054003 9ppCrossRefGoogle Scholar
  60. Xu ZW, Fang FZ, Zhang SJ, Zhang XD, Hu XT, Fu YQ, Li L (2010) Fabrication of micro DOE using micro tools shaped with focused ion beam. Opt Express 18:8025–8032CrossRefGoogle Scholar
  61. Xu ZW, Fang FZ, Gao HF, Zhu Y, Wu W, Weckenmann A (2012) Nano fabrication of star structure for precision metrology developed by focused ion beam direct writing. CIRP Ann Manuf Technol 61:511–514CrossRefGoogle Scholar
  62. Yamamura K, Shimada S, Mori Y (2008) Damage-free improvement of thickness uniformity of quartz crystal wafer by plasma chemical vaporization machining. CIRP Ann Manuf Technol 59:567CrossRefGoogle Scholar
  63. Yamamura K, Takiguchi T, Ueda M, Deng H, Hattori AN, Zettsu N (2011) Plasma assisted polishing of single crystal SiC for obtaining atomically flat strain-free surface. CIRP Ann Manuf Technol 60:571–574CrossRefGoogle Scholar
  64. Yao N (2007) Focused ion beam systems basics and applications. Cambridge University Press, CambridgeCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  1. 1.The State Key Laboratory of Precision Measuring Technology & Instruments, Centre of MicroNano Manufacturing TechnologyTianjin UniversityNankai DistrictChina
  2. 2.College of Precision Instrument and Opto-electronics Engineering, Centre of MicroNano Manufacturing TechnologyTianjin UniversityTianjinChina

Personalised recommendations