Process of Nanojoining

  • Xiaoying QiEmail author
  • Tey Ju Nie
  • Ho Xinning
Reference work entry


Joining is an integral part of manufacturing. Microjoining and macrojoining have been widely used to join metallic and polymeric parts. The parts are often joined via welding. The process often involves melting the parts and adding a filler material that resolidifies to form a strong joint. The energy source to melt the parts can be a laser beam, an electron beam, friction, or ultrasound. Sometimes pressure is applied to enhance the process. Brazing and soldering are also processes commonly used in metal joining. As nanomaterials become more prevalent, nanojoining gains importance. Nanojoining facilitates the assembly of nano-sized building blocks to form practical products. It can also involve the use of nanomaterials to assist joining in bulk materials. In this chapter, the unique properties of nanomaterials owing to the extremely small dimensions and joining of nanoparticles and nanowires via laser irradiation, solder reflow, application of energetic particles such as an electron beam or current, and other methods are discussed. The use of nanomaterials that assist joining of bulk materials by reducing the joining temperature is also reviewed. The addition of nanoparticles and nanotubes can also enhance the properties of the composites formed.


Electrical Resistivity Energy Release Rate Welding Current Radial Breathing Mode PDMS Mold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ajayan PM, Stephan O, Colliex C, Trauth D (1994) Aligned carbon nanotube arrays formed by cutting a polymer resin – nanotube composite. Science 265:1212–1214CrossRefGoogle Scholar
  2. Arai S, Fujimori A, Murai M, Endo M (2008) Excellent solid lubrication of electrodeposited nickel-multiwalled carbon nanotube composite films. Mater Lett 62:3545–3548CrossRefGoogle Scholar
  3. Bakshi SR, Singh V, Balani K, McCartney DG, Seal S, Agarwal A (2008) Carbon nanotube reinforced aluminum composite coating via cold spraying. Surf Coat Technol 202:5162–5169CrossRefGoogle Scholar
  4. Bakshi SR, Lahiri D, Agarwal A (2010) Carbon nanotube reinforced metal matrix composites – a review. Int Mater Rev 55:41–64CrossRefGoogle Scholar
  5. Bal S, Samal SS (2007) Carbon nanotube reinforced polymer composites – a state of the art. Bull Mater Sci 30:379–386CrossRefGoogle Scholar
  6. Balasubramanian K, Burghard M (2005) Chemically functionalized carbon nanotubes. Small 1:180–192CrossRefGoogle Scholar
  7. Banhart F (2001) The formation of a connection between carbon nanotubes in an electron beam. Nano Lett 1:329–332CrossRefGoogle Scholar
  8. Bao Z, Feng Y, Dodabalapur A, Raju VR, Lovinger AJ (1997) High-performance plastic transistors fabricated by printing techniques. Chem Mater 9:1299–1301CrossRefGoogle Scholar
  9. Buffat P, Borel JP (1976) Size effect on the melting temperature of gold particles. Phys Rev A 13:2287–2298CrossRefGoogle Scholar
  10. Cai H, Yan F, Xue Q (2004) Investigation of tribological properties of polyimide/carbon nanotube nanocomposites. Mater Sci Eng A 364:94–100CrossRefGoogle Scholar
  11. Chen WX, Tu JP, Wang LY, Gan HY, Xu ZD, Zhang XB (2003) Tribological application of carbon nanotubes in a metal-based composite coating and composites. Carbon 41:215–222CrossRefGoogle Scholar
  12. Cui Q, Gao F, Mukherjee S, Gu Z (2009) Joining and interconnect formation of nanowires and carbon nanotubes for nanoelectronics and nanosystems. Small 5:1246–1257CrossRefGoogle Scholar
  13. Deshpande VV, Chandra B, Caldwell R, Novikov DS, Hone J, Bockrath M (2009) Mott insulating state in ultraclean carbon nanotubes. Science 323:106CrossRefGoogle Scholar
  14. Dilandro L, Dibenedetto AT, Groeger J (1988) The effect of fiber-matrix stress transfer on the strength of fiber-reinforced composite materials. Polym Compos 9:209–221CrossRefGoogle Scholar
  15. Feng Y, Yuan HL, Zhang M (2005) Fabrication and properties of silver-matrix composites reinforced by carbon nanotubes. Mater Charact 55:211–218CrossRefGoogle Scholar
  16. Fuse T, Moriyama S, Aoyagi Y, Suzuki M, Ishibashi K (2003) Two-electron and four-electron periodicity in single-wall carbon nanotube quantum dots. Superlattices Microstruct 34:377CrossRefGoogle Scholar
  17. Garnier F, Hajlaoui R, Yassar A, Srivastava P (1994) All-polymer field-effect transistor realized by printing techniques. Science 265:1684–1686CrossRefGoogle Scholar
  18. Goh CS, Wei J, Lee LC, Gupta M (2008) Ductility improvement and fatigue studies in Mg-CNT nanocomposites. Compos Sci Technol 68:1432–1439CrossRefGoogle Scholar
  19. Gu Z, Chen Y, Gracias DH (2004) Surface tension driven self-assembly of bundles and networks of 200 nm diameter rods using a polymerizable adhesive. Langmuir 20:11308–11311CrossRefGoogle Scholar
  20. Gülseren O, Ercolessi F, Tosatti E (1995) Premelting of thin wires. Phys Rev B 51:7377–7380CrossRefGoogle Scholar
  21. Guo C, Zuo Y, Zhao X, Zhao J, Xiong J (2007) The effects of pulse-reverse parameters on the properties of Ni-carbon nanotubes composite coatings. Surf Coat Technol 201:9491–9496CrossRefGoogle Scholar
  22. Hansen N (2004) Hall–Petch relation and boundary strengthening. Scr Mater 51:801CrossRefGoogle Scholar
  23. He C, Zhao N, Shi C, Du X, Li J, Li H, Cui Q (2007) An approach to obtaining homogeneously dispersed carbon nanotubes in Al powders for preparing reinforced Al-matrix composites. Adv Mater 19:1128–1132CrossRefGoogle Scholar
  24. Hensel JC, Tung RT, Poate JM, Unterwald FC (1985) Specular boundary scattering and electrical transport in single-crystal thin films of CoSi2. Phys Rev Lett 54:1840CrossRefGoogle Scholar
  25. Hiroshi N, Tomoaki H, Tadashi T (2011) Bonding process of Cu/Cu joint using Cu nanoparticle paste. Trans JWRI 40:33–36Google Scholar
  26. Hongke Y, Zhiyong G, Yu T, Gracias DH (2006) Integrating nanowires with substrates using directed assembly and nanoscale soldering. Nanotechnol IEEE Trans 5:62–66CrossRefGoogle Scholar
  27. Hu A, Panda SK, Khan MI, Zhou Y (2009) Laser welding, microwelding, nanowelding and nanoprocessing. Chin J Lasers 36:3149–3159CrossRefGoogle Scholar
  28. Hu A, Guo JY, Alarifi H, Patane G, Zhou Y, Compagnini G, Xu CX (2010) Low temperature sintering of Ag nanoparticles for flexible electronics packaging. Appl Phys Lett 97:153117CrossRefGoogle Scholar
  29. Hulbert DM, Anders A, Andersson J, Lavernia EJ, Mukherjee AK (2009) A discussion on the absence of plasma in spark plasma sintering. Scr Mater 60:835–838CrossRefGoogle Scholar
  30. Ide E, Angata S, Hirose A, Kobayashi KF (2005) Metal-metal bonding process using Ag metallo-organic nanoparticles. Acta Mater 53:2385–2393CrossRefGoogle Scholar
  31. Kang X, Mai Z, Zou X, Cai P, Mo J (2007) A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode. Anal Biochem 363:143–150CrossRefGoogle Scholar
  32. Khang DY, Jiang H, Huang Y, Rogers JA (2006) A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 311:208CrossRefGoogle Scholar
  33. Kiefer AM, Paskiewicz DM, Clausen AM, Buchwald WR, Soref RA, Lagally MG (2011) Si/Ge junctions formed by nanomembrane bonding. ACS Nano 5:1179CrossRefGoogle Scholar
  34. Kittel C (2005) Introduction to solid state physics. Wiley, New YorkGoogle Scholar
  35. Ko SH, Park I, Pan H, Grigoropoulos CP, Pisano AP, Luscombe CK, Fréchet JMJ (2007a) Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication. Nano Lett 7:1869–1877CrossRefGoogle Scholar
  36. Ko SH, Pan H, Grigoropoulos CP, Luscombe CK, Fréchet JMJ, Poulikakos D (2007b) All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles. Nanotechnology 18:345202CrossRefGoogle Scholar
  37. Kuzmany H, Kukovecz A, Simon F, Holzweber M, Kramberger C, Pichler T (2004) Functionalization of carbon nanotubes. Synth Met 14:113–122CrossRefGoogle Scholar
  38. Laha T, Agarwal A, McKechnie T, Seal S (2004) Synthesis and characterization of plasma spray formed carbon nanotube reinforced aluminum composite. Mater Sci Eng A 381:249–258CrossRefGoogle Scholar
  39. Li L, Hu J, Yang W, Alivisatos AP (2001) Band gap variation of size- and shape-controlled colloidal CdSe quantum rods. Nano Lett 1:349CrossRefGoogle Scholar
  40. Lourie O, Wagner HD (1998) Transmission electron microscopy observations of fracture of single-wall carbon nanotubes under axial tension. Appl Phys Lett 73:3527CrossRefGoogle Scholar
  41. Lu Y, Huang JY, Wang C, Sun S, Lou J (2010) Cold welding of ultrathin gold nanowires. Nat Nanotechnol 5:218–224CrossRefGoogle Scholar
  42. Mafuné F, Kohno J-Y, Takeda Y, Kondow T (2003) Nanoscale soldering of metal nanoparticles for construction of higher-order structures. J Am Chem Soc 125:1686–1687CrossRefGoogle Scholar
  43. McEuen P (2005). Introduction to solid state physics (ed: Johnson S). Wiley, New Jersey, pp 515–564Google Scholar
  44. Mehrotra G, Jha G, Goud JD, Raj PM, Venkatesan M, Iyer M, Hess D, Tummala R (2008). Low-temperature, fine-pitch interconnections using self-patternable metallic nanoparticles as the bonding layer. In: Electronic components and technology conference, pp 1410–1416Google Scholar
  45. Nai SML, Wei J, Gupta M (2006) Improving the performance of lead-free solder reinforced with multi-walled carbon nanotubes. Mater Sci Eng A 423:166–169CrossRefGoogle Scholar
  46. Pande CS, Masumura RA, Armstrong RW (1993) Pile-up based Hall–Petch relation for nanoscale materials. Nanostruct Mater 2:323CrossRefGoogle Scholar
  47. Qi X, Xue C, Huang X, Huang Y, Zhou X, Li H, Liu D, Boey F, Yan Q, Huang W, De Feyter S, Müllen K, Zhang H (2009) Polyphenylene dendrimer-templated in situ construction of inorganic–organic hybrid rice-shaped architectures. Adv Funct Mater 20:43–49CrossRefGoogle Scholar
  48. Qi X, Huang Y, Klapper M, Boey F, Huang W, Feyter SD, Müllen K, Zhang H (2010) In situ modification of three-dimensional polyphenylene dendrimer-templated CuO rice-shaped architectures with electron beam irradiation. J Phys Chem C 114:13465–13470CrossRefGoogle Scholar
  49. Ridley BA, Nivi B, Jacobson JM (1999) All-inorganic field effect transistors fabricated by printing. Science 286:746–749CrossRefGoogle Scholar
  50. Rogers JA, Lagally MG, Nuzzo RG (2011) Synthesis, assembly and applications of semiconductor nanomembranes. Nature 477:45CrossRefGoogle Scholar
  51. Seo M-K, Park S-J (2004) Electrical resistivity and rheological behaviors of carbon nanotubes-filled polypropylene composites. Chem Phys Lett 395:44–48CrossRefGoogle Scholar
  52. Shi WS, Zheng YF, Wang N, Lee CS, Lee ST (2001) A general synthetic route to III–V compound semiconductor nanowires. Adv Mater 13:591–594CrossRefGoogle Scholar
  53. Sinian L, Souzhi S, Tianqin Y, Huimin C, Youshou Z, Hong C (2005) Microstructure and fracture surfaces carbon nanotubes/magnesium matrix composite. Mater Sci Forum 488/489:893–896CrossRefGoogle Scholar
  54. Siochi EJ, Working DC, Park C, Lillehei PT, Rouse JH, Topping CC, Bhattacharyya AR, Kumar S (2004) Melt processing of SWCNT-polyimide nanocomposite fibers. Compos Part B Eng 35:439–446CrossRefGoogle Scholar
  55. Sirringhaus H, Kawase T, Friend RH, Shimoda T, Inbasekaran M, Wu W, Woo EP (2000) High-resolution inkjet printing of all-polymer transistor circuits. Science 290:2123–2126CrossRefGoogle Scholar
  56. Song YS, Youn JR (2005) Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon 43:1378–1385CrossRefGoogle Scholar
  57. Stutzmann N, Friend RH, Sirringhaus H (2003) Self-aligned, vertical-channel, polymer field-effect transistors. Science 299:1881–1884CrossRefGoogle Scholar
  58. Tang J, Wang H-T, Lee DH, Fardy M, Huo Z, Russell TP, Yang P (2010) Holey silicon as an efficient thermoelectric material. Nano Lett 10:4279CrossRefGoogle Scholar
  59. Terrones M, Banhart F, Grobert N, Charlier JC, Terrones H, Ajayan PM (2002) Molecular junctions by joining single-walled carbon nanotubes. Phys Rev Lett 89:075505CrossRefGoogle Scholar
  60. Tohmyoh H, Fukui S (2009) Self-completed Joule heat welding of ultrathin Pt wires. Phys Rev B 80:155403CrossRefGoogle Scholar
  61. Tohmyoh H, Imaizumi T, Hayashi H, Saka M (2007) Welding of Pt nanowires by Joule heating. Scr Mater 57:953–956CrossRefGoogle Scholar
  62. Wakuda D, Hatamura M, Suganuma K (2007) Novel method for room temperature sintering of Ag nanoparticle paste in air. Chem Phys Lett 441:305CrossRefGoogle Scholar
  63. Wakuda D, Kim K-S, Suganuma K (2010) Ag nanoparticle paste synthesis for room temperature bonding. IEEE Trans Compon Packag Technol 33:437–442CrossRefGoogle Scholar
  64. Wang Y, Herron N (1991) Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties. J Phys Chem 95:525CrossRefGoogle Scholar
  65. Wang JZ, Zheng ZH, Li HW, Huck WTS, Sirringhaus H (2004) Dewetting of conducting polymer inkjet droplets on patterned surfaces. Nat Mater 3:171–176CrossRefGoogle Scholar
  66. Xu CL, Wei BQ, Ma RZ, Liang J, Ma XK, Wu DH (1999) Fabrication of aluminum-carbon nanotube composites and their electrical properties. Carbon 37:855–858CrossRefGoogle Scholar
  67. Yang K, Gu M, Guo Y, Pan X, Mu G (2009) Effects of carbon nanotube functionalization on the mechanical and thermal properties of epoxy composites. Carbon 47:1723–1737CrossRefGoogle Scholar
  68. Yu J-K, Mitrovic S, Tham D, Varghese J, Heath JR (2010) Reduction of thermal conductivity in phononic nanomesh structures. Nat Nanotechnol 5:718CrossRefGoogle Scholar
  69. Zhan J, Bando Y, Hu J, Liu Z, Yin L, Golberg D (2005) Fabrication of metal–semiconductor nanowire heterojunctions. Angew Chem Int Ed 44:2140–2144CrossRefGoogle Scholar
  70. Zhang H, Grim PCM, Vosch T, Wiesler UM, Berresheim AJ, Müllen K, De Schryver FC (2000) Discrimination of dendrimer aggregates on mica based on adhesion force: a pulsed force mode atomic force microscopy study. Langmuir 16:9294–9298CrossRefGoogle Scholar
  71. Zhang W, Brongersma SH, Richard O, Brijs B, Palmans R, Froyen L, Maex K (2004) Influence of the electron mean free path on the resistivity of thin metal films. Microelectron Eng 76:146CrossRefGoogle Scholar
  72. Zhao M, Li JC, Jiang Q (2003) Hall–Petch relationship in nanometer size range. J Alloys Compd 361:160CrossRefGoogle Scholar
  73. Zhong R, Cong H, Hou P (2003) Fabrication of nano-Al based composites reinforced by single-walled carbon nanotubes. Carbon 41:848–851CrossRefGoogle Scholar
  74. Zhou S-M, Zhang X-B, Ding Z-P, Min C-Y, Xu G-I, Zhu W-M (2007) Fabrication and tribological properties of carbon nanotubes reinforced Al composites prepared by pressureless infiltration technique. Compos Part A Appl Sci Manuf 38:301–306CrossRefGoogle Scholar
  75. Zschieschang U, Klauk H, Halik M, Schmid G, Dehm C (2003) Flexible organic circuits with printed gate electrodes. Adv Mater 15:1147–1151CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  1. 1.Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore

Personalised recommendations