Solid State Microjoining Processes in Manufacturing

  • Sharon Mui Ling NaiEmail author
  • Murali Sarangapani
  • Johnny Yeung
Reference work entry


This chapter presents the solid-state bonding technologies, in particular the thermocompression bonding and thermosonic bonding technologies, which are used to form microjoints in the electronics industry. The diffusion bonding mechanism and the key bonding conditions required to form reliable joints are presented. Moreover, the recent progresses in the thermocompression bonding and thermosonic ball-wedge bonding technologies are highlighted. Lastly, the effects of different bonding materials and their surface characteristics on the joints’ performance are also discussed.


Bonding Temperature Diffusion Bonding Wire Bond Ball Bond Bonding Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



For section “Advances in the Manufacturing of Thermosonic Ball-Wedge Bonding,” the authors sincerely thank their fellow colleagues from R&D-APL, R&D-MCL, MTD, QA, and engineering divisions of Heraeus Materials Singapore Pte. Ltd. for the data collection.


  1. Ang XF, Zhang GG, Wei J, Chen Z, Wong CC (2006) Temperature and pressure dependence in thermocompression gold stud bonding. Thin Solid Films 504:379–383CrossRefGoogle Scholar
  2. Ang XF, Li FY, Tan WL, Chen Z, Wong CC, Wei J (2007) Self-assembled monolayers for reduced temperature direct metal thermocompression bonding. Appl Phys Lett 91(6):061913CrossRefGoogle Scholar
  3. Ang XF, Chen Z, Wong CC, Wei J (2008a) Effect of chain length in low temperature gold-gold bonding by self-assembled monolayers. Appl Phys Lett 92(13):131913CrossRefGoogle Scholar
  4. Ang XF, Li FY, Wei J, Tan WL, Wong CC (2008b) A thermal and passivation study of self-assembled monolayers on thin gold films. Thin Solid Films 516(16):5721–5724CrossRefGoogle Scholar
  5. Ang XF, Wei J, Chen Z, Wong CC (2009) Enabling low temperature copper bonding with an organic monolayer. Adv Mater Res 74:133–136CrossRefGoogle Scholar
  6. ASM Handbook (1995) Alloy phase diagram, vol 3. ASM International, Materials ParkGoogle Scholar
  7. Breach CD (2010) What is the future of bonding wire? Will Cu entirely replace Au? Gold Bullet 43(3):150–168CrossRefGoogle Scholar
  8. Camenschi G, Sandru N (1980) Dynamic aspects in wire drawing problem. Lett Appl Eng Sci 18:999–1007zbMATHGoogle Scholar
  9. Chew YH, Wong CC, Breach CD, Wulff F, Mhaisalkar SG, Pang CI, Saraswati (2004) Effects of Ca and Pd on mechanical properties and stored energy of hard drawn Au bonding wire. Thin Solid Films 462–463:346–350. doi:10.1016/j.tsf.2004.05.079CrossRefGoogle Scholar
  10. Chin LC, Ang XF, Wei J, Chen Z, Wong CC (2006) Enhancing direct metal bonding with self-assembled monolayers. Thin Solid Films 504(1–2):367–370CrossRefGoogle Scholar
  11. Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Addison-Wesley, ReadingGoogle Scholar
  12. Derby B (1981) Theoretical model of diffusion bonding. PhD thesis, Cambridge University, CambridgeGoogle Scholar
  13. Fan C, Abys JA, Blair A (1999) Au and Al wire bonding to Pd surface finishes. Circuit World 25(3):23–27CrossRefGoogle Scholar
  14. Fontana MG (1987) Corrosion engineering, 3rd edn. McGraw-Hill Book, New YorkGoogle Scholar
  15. Gould JE (2008) Mechanisms of solid-state bonding processes. In: Zhou Y (ed) Microjoining and nanojoining, pp 3–24Google Scholar
  16. Harman GG (1997) Wire bonding in microelectronics – materials, processes, reliability and yield, 2nd edn. McGraw Hill, New YorkGoogle Scholar
  17. Huang IJ, Ayyaswamy PS, Cohen IM (1995) Melting and solidification of thin wires: a class of phase-change problems with a mobile interface. Int J Heat Mass Transf 38(9):1637–1659CrossRefzbMATHGoogle Scholar
  18. Johnson RW, Palmer MJ, Bozack MJ, Isaacs-Smith T (1999) Thermosonic Au wire bonding to laminate substrates with Pd surface finishes. IEEE Trans Elec Pack Manuf 22(1):7–15CrossRefGoogle Scholar
  19. Kazakov NF (1985) Diffusion bonding of materials. Mir Publishers, MoscowGoogle Scholar
  20. Kim YG, Pavuluri JK, White JR, Busch-Vishniac IJ, Masada GY (1995) Thermocompression bonding effects on bump-pad adhesion. IEEE Trans Comp, Packag Manuf Technol 18:192–199CrossRefGoogle Scholar
  21. Kim TH, Howlader MMR, Itoh T, Suga T (2003) Room temperature Cu-Cu direct bonding using surface activated bonding method. J Vac Sci Technol A 21(2):449–453CrossRefGoogle Scholar
  22. Ko CT, Chen KN (2012) Low temperature bonding technology for 3D integration. Microelectron Reliab 52(2):302–311CrossRefGoogle Scholar
  23. Krabbenborg B (1999) High current bond design rules based on bond pad degradation and fusing of the wire. Microelecron Rel 39:77–88CrossRefGoogle Scholar
  24. Li J, Foo QH, Ang XF, Wei J, Wong CC (2009) Chain length dependence of SAMs-assisted copper thermocompression bonding. Adv Mater Res 74:291–294CrossRefGoogle Scholar
  25. Li J, Ang XF, Lee KH, Romanato F, Wong CC (2010) In-situ monitoring of the thermal desorption of alkanethiols with surface plasmon resonance spectroscopy (SPRS). J Nanosci Nanotechnol 10:1–5CrossRefGoogle Scholar
  26. Lin YW, Wang RY, Ke WB, Wang IS, Chiu YT, Lu KC, Lin KL, Lai YS (2012) The Pd distribution and Cu flow pattern of the Pd plated Cu wire bond and their effect on the nanoindentation. Mater Sci Eng A 543:151–157CrossRefGoogle Scholar
  27. Loh E (1983) Physical analysis of data on fused open bond wires. IEEE Trans CHMT 6(2):209–217MathSciNetGoogle Scholar
  28. Maiocco L, Smyers D, Munroe PR, Baker I (1990) Correlation between electrical resistance and microstructure in Au wire bonds on Al films. IEEE Trans CHMT 13(3):592–595Google Scholar
  29. Mertol A (1995) Estimation of Al and Au bond wire fusing current and fusing time. IEEE Trans Comp Pack Manu Tech B 18(1):210–214CrossRefGoogle Scholar
  30. Murali S (2006) Formation and growth of intermetallics in thermosonic wire bonds: Significance of vacancy-solute binding energy. J Alloys Comp 426:200–204CrossRefGoogle Scholar
  31. Murali S, Srikanth N (2006) Acid decapsulation of epoxy molded IC packages with Cu wire bonds. IEEE Trans Elec Pack Manuf 29(3):179–183CrossRefGoogle Scholar
  32. Murali S, Srikanth N, Charles JV III (2003a) Grains, deformation substructures, and slip bands observed in thermosonic Cu ball bonding. Mater Character 50:39–50CrossRefGoogle Scholar
  33. Murali S, Srikanth N, Charles JV III (2003b) An analysis of intermetallic formation of Au and Cu ball bonding on thermal aging. Mater Res Bull 38:637–646CrossRefGoogle Scholar
  34. Murali S, Srikanth N, Charles JV III (2004) Effect of wire size on the formation of intermetallics and Kirkendall voids on thermal ageing of thermosonic wire bonds. Mater Lett 58:3096–3101CrossRefGoogle Scholar
  35. Murali S, Srikanth N, Wong YM, Charles JV III (2007) Fundamentals of thermosonic Cu wire bonding in microelectronics packaging. J Mater Sci 42:615–623. doi:10.1007/s10853-006-1148-7CrossRefGoogle Scholar
  36. Onuki J, Suwa M, Iizuka T, Okikawa S (1986) Ball formation of Al ball bonding. IEEE Trans CHMT 8(4):559–563Google Scholar
  37. Oppermann H, Dietrich L (2012) Nanoporous gold bumps for low temperature bonding. Microelectron Reliab 52(2):356–360CrossRefGoogle Scholar
  38. Prasad SK (2004) Advanced wirebond interconnection technology. Kluwer Academic, BostonGoogle Scholar
  39. Qi G, Zhang S (1997) Recrystallization of Au alloys for producing fine bonding wires. J Mater Proc Tech 68:288–293CrossRefGoogle Scholar
  40. QiJia Chen, Pagba A, Reynoso D, Thomas S, Toc HJ (2010) Cu wire and beyond – Ag wire an alternative to Cu? In: 12th electronic pack technology conference, Singapore, pp 591–596Google Scholar
  41. Srikanth N, Premkumar J, Sivakumar M, Wong YM, Charles JV III (2007) Effect of wire purity on Cu wire bonding. In: 9th electronic pack technology conference, Singapore, pp 755–759Google Scholar
  42. Su P, Seki H, Ping C, Zenbutsu S, Itoh S, Huang L, Liao N, Liu B, Chen C, Tai W, Tseng A (2011) An evaluation of effects of molding compound properties on reliability of Cu wire components. In: IEEE electronic components and technology conference, Lake Buena Vista, FL, pp 363–369 (978-1-61284-498-5/11)Google Scholar
  43. Taklo MMV, Storås P, Schjølberg-Henriksen K, Hasting HK, Jakobsen H (2004) Strong, high-yield and low-temperature thermocompression silicon wafer-level bonding with gold. J Micromech Microeng 14:884–890CrossRefGoogle Scholar
  44. Tan CS, Lim DF, Singh SG, Goulet SK, Bergkvist M (2009) Cu–Cu diffusion bonding enhancement at low temperature by surface passivation using self-assembled monolayer of alkane-thiol. Appl Phys Lett 95:192108CrossRefGoogle Scholar
  45. Tang LJ, Ho HM, Zhang YJ, Lee YM, Lee CW (2010) Investigation of Pd distribution on the free air ball of Pd coated Cu wire. In: 12th electronic pack technology conference, Singapore, pp 777–781Google Scholar
  46. Tanna S, Pisigan JL, Song WH, Halmo C, Persic J, Mayer M (2012) Low cost Pd coated Ag bonding wire for high quality FAB in air. In: Electronic Components and Technology Conference (ECTC), 2012 I.E. 62nd, San Diego, CA, pp 1103–1109 (978-1-4673-1965-2/12)Google Scholar
  47. Tench DM (1994) Solderability assessment via SERA. J App Electrochem 24:46–50Google Scholar
  48. Tsau CH (2003) Fabrication and characterization of wafer-level gold thermocompression bonding. MIT, Cambridge, MAGoogle Scholar
  49. Tsau CH, Spearing SM, Schmidt MA (2002) Fabrication of wafer-level thermocompression bonds. J Microelectromech Syst 11(6):641–647CrossRefGoogle Scholar
  50. Tsau CH, Spearing SM, Schmidt MA (2004) Characterization of wafer-level thermocompression bonds. IEEE J Microelectromech Syst 13(6):963–971CrossRefGoogle Scholar
  51. Wang PI, Lee SH, Parker TC, Frey MD, Karabacak T, Lu JQ, Lu TM (2009) Low temperature bonding by copper nanorod array. Electrochem Solid-State Lett 12(4):H138–H141CrossRefGoogle Scholar
  52. Xu H, Liu C, Silberschmidt VV, Pramana SS, White TJ, Chen Z (2009) A re-examination of the mechanism of thermosonic Cu ball bonding on Al metallization pads. Scr Mater 61:165–168CrossRefGoogle Scholar
  53. Zhong ZW (2009) Wire bonding using Cu wire. Microelectron Int 26(1):10–16CrossRefGoogle Scholar
  54. Zompi A, Cipparrone M, Levi R (1991) Computer aided wire drawing. Ann CIRP 40(1):319–322CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • Sharon Mui Ling Nai
    • 1
    Email author
  • Murali Sarangapani
    • 2
  • Johnny Yeung
    • 2
  1. 1.Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
  2. 2.Heraeus MaterialsSingaporeSingapore

Personalised recommendations