Adhesive Bonding Technology

  • Shantanu BhowmikEmail author
  • R. Benedictus
  • Yu Dan
Reference work entry


The chapter gives a brief introduction of adhesive bonding technology. Emphasis is placed on understanding of the fundamental mechanisms of bonding. Various types of adhesives are compared, and the techniques to modify polymer surface for improving the adhesion strength are described in detail. Examples are given to show important applications of adhesive bonding technology in automotive and aerospace industries.


Contact Angle Adhesion Strength Glow Discharge Adhesive Bonding Mechanical Interlocking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Allara DL, Fowkes FM, Noolandi J, Rubloff GW, Tirrell MV (1986) Bonding and adhesion of polymer interfaces. Mat Sci Eng 83:213–226CrossRefGoogle Scholar
  2. Allen KW (2003) A review of some basics of adhesion over the past four decades. Int J Adhes Adhes 23(2):87–93, Elsevier Science, ISSN 0143-7496. doi:10.1016/S0143-7496(02)00054-4Google Scholar
  3. Allen KW (2005) In: Packham DE (ed) Handbook of adhesion, 2nd edn. John Wiley & Sons, Ltd, Chichester, UK. doi: 10.1002/0470014229.ch12Google Scholar
  4. Al-Zahrani FA, Al-Masmoom AA, Khashaba UA (2009) MASAUM J Rev Surv 1(2). occupant in a sedan. MSc thesis, Wichita State University, College of Engineering, 2006Google Scholar
  5. Amin S, Amin M (2011) Thermoplastic elastomeric (TPE) materials and their use in outdoor electrical insulation. Rev Adv Mater Sci 29:15–30Google Scholar
  6. Bajpai R, Mishra V, Agrawal P, Datt SC (2002) Surface modification on PMMA:PVDF polyblend: hardening under chemical environment. Bull Mater Sci 25(1):21–23CrossRefGoogle Scholar
  7. Bhowmik S, Bonin HW, Bui VT, Weir RD (2006) Modification of high performance polymer composite through high energy radiation and low pressure plasma for aerospace and space applications. J Appl Polym Sci 102:1959–1967CrossRefGoogle Scholar
  8. Bhowmik S, Benedictus R, Poulis JA, Bonin HW, Bui VT (2009) High performance nano adhesive bonding of titanium and its durability under aerospace environments. Int J Adhes Adhes 29:259–267CrossRefGoogle Scholar
  9. Bogaerts A, Wilken L, Hoffmann V, Gijbels R, Wetzig K (2002) Comparison of modeling calculations with experimental results for rf glow discharge optical emission spectrometry. Spectrochimica Acta Part B 57:109–119CrossRefGoogle Scholar
  10. Brochard F, De Gennes PG (1980) Polymer-polymer interdiffusion. Europhys Lett 1:221–224CrossRefGoogle Scholar
  11. Clearfield HM, McNamara DK, Davis GD (1991) Adherend surface preparation for structural adhesive bonding. In: Lee LH (ed) Adherend bonding. Plenum Press, New York, p. 203CrossRefGoogle Scholar
  12. da Silva LFM, Adams RD (2005) Measurement of the mechanical properties of structural adhesives in tension and shear over a wide range of temperatures. J Adhes Sci Technol 19(2):109–141CrossRefGoogle Scholar
  13. Edwards SF, Grant JWV (1973) The effect of entanglements on the viscosity of a polymer melt. J Phys Math Gen 6:1186–1195Google Scholar
  14. Evans JR, Packham DE (1979) Adhesion of polyethylene to metals: The role of surface topography. J Adhes 10:177–191CrossRefGoogle Scholar
  15. Fisher LW (2005) Selection of engineering materials and adhesives. Taylor & Francis, Boca Raton. ISBN 0824740475CrossRefGoogle Scholar
  16. Fowkes FM (1987) Role of acid–base interfacial bonding in adhesion. J Adhes Sci Technol 1:7–27CrossRefGoogle Scholar
  17. Fuyuno I (2005) Toyota’s production line leads from lab to road. Nature 435(7045):1026–1027CrossRefGoogle Scholar
  18. Goldman M, Goldman A, Sigmond RS (1985) The corona discharge, its properties and specific uses. Pure Appl Chem 57:1353–1362Google Scholar
  19. Griffiths I (1999) Internal report no VT0037, VICTREXGoogle Scholar
  20. Jennings CW (1972) J Adhes 4:25–41CrossRefGoogle Scholar
  21. Kinloch AJ (1986) Durability of structural adhesives. In: Kinloch AJ (ed) Elsevier Applied Science Publishers, pp 7–11Google Scholar
  22. Klein J (1979) The self-diffusion of polymers. Contemp Phys 20(6):611–629CrossRefGoogle Scholar
  23. Lau JH, Wong CP, Lee N-C, Lee SWR (2002) Electronics manufacturing: with lead-free, halogen-free, and conductive-adhesive materials. McGraw-Hill Professional, New York. ISBN 978-0-07-138624-1Google Scholar
  24. Lubin G, Peters ST (1998) Fiction. In: Handbook of composites, 2nd edn. Chapman & Hall, Great Britain,1118 pGoogle Scholar
  25. Mays GC, Hutchinson AR (1992) Adhesives in civil engineering. Cambridge University Press, p 333. ISBN 0 521 32 677 X HardbackGoogle Scholar
  26. Mazumdar SK (2002) Composites manufacturing: materials, product, and process engineering. CRC Press, Boca Raton. doi:10.1201/9781420041989.ch1Google Scholar
  27. Nihlstrand A (1996) Doctoral thesis, Chalmers University of Technology, GoteborgGoogle Scholar
  28. Park S-J, Seo M-K (2011) Interface science and composites. ElsevierGoogle Scholar
  29. Patel V (2009) FRP Today, December, pp 18–23Google Scholar
  30. Possart W (1988) Experimental and theoretical description of the electrostatic component of adhesion at polymer/metal contacts. Int J Adhes Adhes 8(2):77–83CrossRefGoogle Scholar
  31. Ramarathnam G, Libertucci M Sadowski MM, North TH (1992) Factors affecting the lap-shear strength of ultrasonic welds. (Ultrasonic Welding Using Tie-Layer Materials, part 2)(Polymer Topics: Joining of Plastics and Plastic Composites). Polymer Engineering and Science. Society of Plastics Engineers. Am Weld J Weld Res Suppl 483–490Google Scholar
  32. Roberts AD (1977) Surface charge contribution in rubber adhesion and friction. J Phys Appl Phys 10:1801–1819CrossRefGoogle Scholar
  33. Sharfrin E, Zisman WA (1960) Constitutive relations in the wetting of low energy surfaces and the theory of the retraction method of preparing monolayers. J Phys Chem 64(5):519–524. doi:10.1021/j100834a002CrossRefGoogle Scholar
  34. Shaw SJ, Tod DA (1994) Mater World 2:523Google Scholar
  35. Shenton MJ, Stevens GC (2001) Surface modification of polymer surfaces: atmospheric plasma versus vacuum plasma treatments. J Phys D Appl Phys 34:2761–2768CrossRefGoogle Scholar
  36. Sheshadri A (2006) Design and analysis of a composite beam for side impact protection of occupant in a sedan. MSc thesis, Wichita State University, College of EngineeringGoogle Scholar
  37. Shikhmurzaev YD (1993) The moving contact line on a smooth solid surface. Int J Multiphas Flow 19(4):589–610CrossRefzbMATHGoogle Scholar
  38. Skeist I (1990) Handbook of adhesives. Chapman and Hall, 347, pp 39–73, 351Google Scholar
  39. Thomas S, Visakh PM (2011) Handbook of engineering and speciality thermoplastics: polyethers and polyesters, vol 3. WileyGoogle Scholar
  40. Todd RH, Allen DK, Alting L (1994) Manufacturing processes reference guide. Industrial Press. ISBN 0-8311-3049-0Google Scholar
  41. Toyota on a roll (2005) Nature publishing group. Nature 435(7045):1004Google Scholar
  42. Vodicka R (1996) Thermoplastics for airframe applications, a review of the properties and repair methods for thermoplastic composites. DSTO Aeronautical and Maritime Research LaboratoryGoogle Scholar
  43. Voyutskii SS (1963) Autohesion and adhesion of high polymers. Wiley Interscience, New YorkGoogle Scholar
  44. Wu S, Chuang HK, Han CD (1986) Diffuse interface between polymers: structure & kinetics. J Polym Sci Polym Phys 24:18–159Google Scholar
  45. Zhuang H (1998) Synthesis & characterization of aryl phosphine oxide containing thermoplastic polyimides & thermosetting polyimides with controlled reactivity. Blacksburg, VirginiaGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  1. 1.Department of Aerospace EngineeringAmrita UniversityCoimbatoreIndia
  2. 2.Faculty of Aerospace EngineeringDelft University of TechnologyDelftThe Netherlands
  3. 3.Singapore Institute for Manufacturing Technology (SIMTech)SingaporeSingapore

Personalised recommendations