Thermal and Cold Spraying Technology in Manufacturing

  • Jyotsna Dutta Majumdar
Reference work entry


Thermal spray refers to a group of coating techniques whereby droplets of molten or partially molten materials are sprayed onto a solid substrate to develop the coating. Based on the applied heat source and the process characteristics, a large number of thermal spray techniques are commercially available, enabling a wide range of materials to be coated. In thermal spray, the basic bonding mechanism is mechanical interlocking, and the bonding between splats can be improved by increasing temperature or particle velocities during particle impact. However, for coating of metallic materials or composites, high processing temperatures can increase the amount of oxides embedded in the coating and, therefore, reducing their performance for structural application. Cold spray is another solid-state spraying process in which the coating materials are not melted in the spray gun; instead, the kinetic energy of fast-traveling solid particles is converted into heat, and there is interfacial deformation upon impact with the substrate, producing a combination of mechanical interlocking and metallurgical bonding. In the present contribution, a detailed overview of the thermal spray and cold spray techniques on coating of materials is presented. Finally, the future scope of the application of thermal spray and cold spray techniques is presented.


Residual Stress Thermal Spray Bond Coat Plasma Spray Thermal Barrier Coating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ahmed A (2002) Rolling contact fatigue. In: Failure analysis and prevention. ASM handbook, vol 11. ASM International, Materials Park, pp 941–956Google Scholar
  2. Budinski KG (1998) Surface engineering for wear resistance. Prentice Hall, New YorkGoogle Scholar
  3. Busso EP, Wright L, Evans HE, McCartney LN, Saunders SRJ, Osgerby S, Nunn J (2007) A physics-based life pre-diction methodology for thermal barrier coating systems. Acta Mater 55(5):1491–1503CrossRefGoogle Scholar
  4. Champagne VK Jr, Helfritch D et al (2005) Interface material mixing formed by the deposition of copper on aluminum by means of the cold spray process. J Therm Spray Technol 14:330–334CrossRefGoogle Scholar
  5. Chattopadhyay R (2004) Advanced thermally assisted surface engineering processes. Kluwer Academic, DordrechtGoogle Scholar
  6. Choudhuri A, Mohanty PS, Karthikeyan J (2008) Bio-ceramic composite coatings by cold spray technology (ASB industries): 22241 manuscript 3762Google Scholar
  7. Crawmer DE (2005) Coating structures, properties, and materials. In: Davis JR, Thermal Spray Technologies Inc (eds) Handbook of thermal spray technology. ASM International, Materials Park, p 50Google Scholar
  8. Crawmer DE, Thermal Spray Technologies Inc (2004) Introduction to coatings, equipment, and theory. In: Handbook of thermal spray technology. ASM International/The Thermal Spray Society, Materials Park, pp 43–46Google Scholar
  9. Davis JR (ed) (2004) Handbook of Thermal Spray Technology, ASM International, Materials Park, OH, USA, pp 47–53Google Scholar
  10. Dickinson ME, Yamada M (2010) A new method for measuring shear adhesion strength of ceramic cold spray splats. Nanosci Nanotechnol Lett 2(4):348–351CrossRefGoogle Scholar
  11. DIN EN NN (1994) Ermittlung der Haftzugfestigkeit. Thermal spraying; determination of tensile adhesive strength. Beuth, Berlin, 01–582Google Scholar
  12. Draper CW, Poate JM (1985) Laser surface alloying. Int Met Rev 30:85–108CrossRefGoogle Scholar
  13. Dutta Majumdar J, Manna I (2011) Laser material processing. Intern Mater Rev 56:341–388CrossRefGoogle Scholar
  14. Fauchais P, Montavon G, Vardelle M, Cedelle J (2006) Development in direct current plasma spraying. Surf Coat Technol 201:1908–1921CrossRefGoogle Scholar
  15. Ghelichi R, Guagliano M (2009) Coating by the cold spray processing: a state of art. Frattura ed Integrità Strutturale 8:30–44. doi:10.3221/igf-esis.08.03Google Scholar
  16. Guide to Engineered Materials (2001). Adv Mater Process 159(12): 203Google Scholar
  17. He J, Schoenung JM (2002) Nanostructured coatings. Mater Sci Eng 336:274–319CrossRefGoogle Scholar
  18. Heimann RB (2008) Plasma spray coating: principles and applications. Wiley, Weinheim. ISBN 978-3527320509Google Scholar
  19. Karthikeyan J (2004) Cold spray technology: international status and USA efforts, report by ASB IndustriesGoogle Scholar
  20. Khor KA, Gu YW (2000) Thermal properties of plasma-sprayed functionally graded thermal barrier coatings. Thin Solid Films 372:104–113CrossRefGoogle Scholar
  21. Kim JH, Kim MC, Park CG (2003) Evaluation of functionally graded thermal barrier coatings fabricated by detonation gun spray technique. Surf Coat Technol 168(2):275–280, 733CrossRefGoogle Scholar
  22. Knight R, Smith RW (1998) ASM handbook: powder metal technologies and applications, vol 7. ASM International, Materials Park, p 415. ISBN 978-0-87170-387-3Google Scholar
  23. Lau ML, Lavernia EJ (1999) Microstructural evolution and oxidation behavior of nanocrystalline 316-stainless steel coatings produced by high velocity oxygen-fuel spraying. Mater Sci Eng A 272:222–229CrossRefGoogle Scholar
  24. Lau ML, Jiang HG, Nuchter W, Lavernia EJ (1998) Thermal spraying of nanocrystalline Ni coatings. Phys Status Solidi A 166:257–268CrossRefGoogle Scholar
  25. Leroux F, Campagne C, Perwuelz A, Gengembre L (2008) Fluorocarbon nano-coating of polyester fabrics by atmospheric air plasma with aerosol. Appl Surf Sci 254(13):3902–3908CrossRefGoogle Scholar
  26. Li CJ, Li WY (2003) Deposition characteristics of titanium coating in cold spraying. Surf Coat Technol 167:278CrossRefGoogle Scholar
  27. Li CJ, Li WY, Wang YY, Yang GJ, Fukanuma H (2005) Thermal spray 2007: global coating solutions: proceedings of the 2007. Thin Solid Films 489(1–2): 79–85Google Scholar
  28. Li CJ, Li WY, Lio H (2006) Frattura ed Integrità Strutturale: annals 2012. J Therm Spray Technol 15(2):212CrossRefGoogle Scholar
  29. Li C-J, Yang G-J, Pei-Hu G, Jian M, Yu-Yue W, Cheng-Xin L (2007) Characterization of nanostructured WC-Co deposited by cold spraying. J Therm Spray Technol 16(5–6):1011–1020CrossRefGoogle Scholar
  30. Li CJ, Wang HT, Zhang Q, Yang GJ, Li WY, Lio HL (2010) Influence of spray materials and their surface oxidation on the critical velocity in cold spraying. J Therm Spray Technol 19(1–2):95–101CrossRefGoogle Scholar
  31. Lima RS, Marple BR (2007) Thermal spray coatings engineered from nanostructured ceramic agglomerated powders for structural, thermal barrier and biomedical applications: a review. J Therm Spray Technol 16(2007):40–63CrossRefGoogle Scholar
  32. Lima RS, Kucuk A, Berndt CC, Karthikeyan J, Kay CM, Lindemann J (2002a) Deposition efficiency, mechanical properties and coating roughness in cold-sprayed titanium. J Mater Sci Lett 21:1687–1689CrossRefGoogle Scholar
  33. Lima RS, Karthikeyan J, Kay CM, Lindemann J, Berndt CC (2002b) Microstructural characteristics of cold-sprayed nanostructured WC-Co. Thin Solid Films 416:129–135CrossRefGoogle Scholar
  34. Longo FN, Longo Associates (2005) Coating operations. In: Handbook of thermal spray technology. ASM International, Materials Park, p 121Google Scholar
  35. Lupoi R, Neill WO (2010) Deposition of metallic coatings on polymer surfaces using cold spray. Surf Coat Technol 205:2167–2173CrossRefGoogle Scholar
  36. Nath S, Manna I, Dutta Majumdar J (2013) Compositionally graded thermal barrier coating by hybrid thermal spraying route and its non-isothermal oxidation behavior. J Therm Spray Technol. doi:10.1007/s11666-013-9937-4Google Scholar
  37. Padture P, Gell M, Jordan EH (2002) Thermal barrier coatings for gas-turbine engine. Appl Sci 296(5566):280–284Google Scholar
  38. Pawlowski L (2008) The science and engineering of thermal spray coatings. Wiley, Chichester, p 74CrossRefGoogle Scholar
  39. Petrovicova E, Schadler LS (2002) Thermal spraying of polymers. Int Mater Rev 47(4):169–190CrossRefGoogle Scholar
  40. Rajasekaran B, Mauer G, Vaßen R (2011) Enhanced characteristics of HVOF-sprayed MCrAlY bond coats for TBC applications. J Therm Spray Technol 20:1209–1216CrossRefGoogle Scholar
  41. Schneider KE, Belashchenko V et al (2006) Thermal spraying for power generation components. Wiley, WenhamCrossRefGoogle Scholar
  42. Schoop MU, Guenther H (1917) Das schoopsche metallspritz-verfahren. Franckh-Verlag, StuttgartGoogle Scholar
  43. Sharma P, Dutta Majumdar J (2013) Microstructural characterization and properties evaluation of Ni-based hardfaced coating on AISI 304 stainless steel 4 by high velocity oxyfuel coating technique. Metall Mater Trans A 44A:372–380CrossRefGoogle Scholar
  44. Singh H, Sidhu TS, Kalsi SBS (2010) Effect of nano-coating on waste-to-energy (WTE) plant: a review. J Electron Eng 1(1):1–7Google Scholar
  45. Singh H, Sidhu TS, Kalsi SBS (2012) Cold spray technology: future of coating deposition processes. Frattura (ed) Integrità Strutturale 22:69–84. doi:10.3221/IGF-esis.22.0869Google Scholar
  46. Smith RW (2004) Handbook of thermal spray technology. ASM International, Materials ParkGoogle Scholar
  47. Smolka K (1985) Thermisches Spritzen, Ein Leitfaden für den Praktiker. DVS, DüsseldorfGoogle Scholar
  48. Steen WM (2003) Laser materials processing. Springer, LondonCrossRefGoogle Scholar
  49. Thorpe ML (1993) Thermal spray: industry in transition. Adv Mater Process 143(5):50–56Google Scholar
  50. Tinashe Sanyangare E (2010) Conceptual design of a low pressure cold gas dynamic spray system (LPCGDS). MS thesis, University of the Witwatersrand, JohannesburgGoogle Scholar
  51. Tucker RC Jr (Praxair Surface Technologies Inc) (1994) Thermal spray coatings. In: ASM handbook. Surface engineering, vol 5. ASM International, Materials Park, pp 497–509Google Scholar
  52. Turner TH, Budgen NE (1926) Metal spraying. Charles Griffin, LondonGoogle Scholar
  53. Vassen R, Kassner H, Stuke A, Mack DE, Jarligo MO, Stover D (2010) Functionally graded thermal barrier coatings with improved reflectivity and high temperature capability. Mater Sci Forum 631(632):73–78Google Scholar
  54. Walser B (2004) The importance of thermal spray for current and future applications in key industries. Spraytime 10(4):1–7Google Scholar
  55. Walter R (2005) Testing of coatings. In: Davis JR (ed) Handbook of thermal spray technology. ASM International, Materials Park, p 262Google Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations