Skip to main content

Physical Vapor Deposition in Manufacturing

  • Reference work entry
  • First Online:

Abstract

Progress in the manufacturing and improvement of the operational strength of structural elements and tools applied in the diverse areas of life is mainly achieved by the increasingly widespread use of deposition techniques of thin layers made of hard, wear-resistant ceramic materials. A wide variety of coating types presently available and coating deposition technologies have resulted from the growing demand seen in recent years for cutting edge methods of material modification and surface protection. Among the numerous techniques enhancing the life of materials, physical vapour deposition (PVD) methods now play a significant role in the industrial practice.

This chapter presents physical vapour deposition (PVD) methods for fabricating hard coatings on engineering materials and in particular: deposition methods, PVD coatings synthesis and substrate surface preparation, and also the applications of PVD coatings, as well as an overview of research methods and coating properties.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   1,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Antonov M, Hussainova I, Sergejev F, Kulu P, Gregor A (2009) Assessment of gradient and nanogradient PVD coatings behaviour under erosive, abrasive and impact wear conditions. Wear 267:898–906

    Article  Google Scholar 

  • Bobzin K, Bagcivan N, Goebbels N, Yilmaz K, Hoehn B-R, Michaelis K, Hochmann M (2009) Lubricated PVD CrAlN and WC/C coatings for automotive applications. Surf Coat Technol 204:1097–1101

    Article  Google Scholar 

  • Burnett PJ, Rickerby DS (1987) The relationship between hardness and scratch adhesion. Thin Solid Films 154:403–416

    Article  Google Scholar 

  • Cheng YC, Browne T, Heckerman B, Meletis EI (2010) Mechanical and tribological properties of nanocomposite TiSiN coatings. Surf Coat Technol 204(14):2123–2129

    Article  Google Scholar 

  • Cselle T, Morstein M, Holubar P, Jilek M, Karimi A (2002) Nanostructured coatings and processes on an industrial scale. In: Proceedings of the Gorham 2002 conference – advanced coatings and surface systems for cutting tools and wear parts, Atlanta, pp 1–17

    Google Scholar 

  • Dobrzański LA (2006) Engineering materials with materials design: fundamentals of materials science and metallurgy. WNT, Warszawa

    Google Scholar 

  • Dobrzański LA, Gołombek K (2005) Structure and properties of the cutting tools made from cemented carbides and cermets with the TiN+mono-, gradient- or multi(Ti, Al, Si)N+TiN nanocrystalline coatings. J Mater Process Technol 164–165:805–815

    Article  Google Scholar 

  • Dobrzański LA, Lukaszkowicz K (2004) Erosion resistant and tribological properties of coatings deposited by reactive magnetron sputtering method onto the brass substrate. J Mater Process Technol 157–158:317–323

    Article  Google Scholar 

  • Dobrzański LA, Gołombek K, Kopač J, Soković M (2004) Effect of depositing the hard surface coatings on properties of the selected cemented carbides and tool cermets. J Mater Process Technol 157–158:304–311

    Article  Google Scholar 

  • Dobrzański LA, Lukaszkowicz K, Zarychta A, Cunha L (2005) Corrosion resistance of multilayer coatings deposited by PVD techniques onto the brass substrate. J Mater Process Technol 164–165:816–821

    Article  Google Scholar 

  • Dobrzański LA, Gołombek K, Hajduczek E (2006) Structure of the nanocrystalline coatings obtained on the CAE process on the sintered tool materials. J Mater Process Technol 175(1–3):157–162

    Article  Google Scholar 

  • Dobrzański LA, Pakuła D, Mikuła J, Gołombek K (2007) Investigation of the structure and properties of coatings deposited on ceramic tool materials. Int J Surf Sci Eng 1(1):111–124

    Article  Google Scholar 

  • Dobrzański LA, Gołombek K, Mikuła J, Pakuła D (2008a) Multilayer and gradient PVD coatings on the sintered tool materials. J Achiev Mater Manuf Eng 31(2):170–190

    Google Scholar 

  • Dobrzański LA, Żukowska LW, Mikuła J, Gołombek K, Pakuła D, Pancielejko M (2008b) Structure and mechanical properties of gradient PVD coatings. J Mater Process Technol 201(1–3):310–314

    Article  Google Scholar 

  • Dobrzański LA, Żukowska LW, Kwaśny W, Mikuła J, Gołombek K (2010) Ti(C, N) and (Ti, Al)N hard wear resistant coatings. Archiv Mater Sci Eng 42(2):93–103

    Google Scholar 

  • Donnet C, Erdemir A (2004) Solid lubricant coatings: recent developments and future trends. Tribol Lett 17:389–397

    Article  Google Scholar 

  • Gołombek K, Dobrzański LA, Soković M (2004) Properties of the wear resistant coatings deposited on the cemented carbides substrates in the cathodic arc evaporation process. J Mater Process Technol 157–158:341–347

    Article  Google Scholar 

  • Kim W-G, Choe H-C (2012) Effects of TiN coating on the corrosion of nanostructured Ti–30Ta–xZr alloys for dental implants. Appl Surf Sci 258:1929–1934

    Article  Google Scholar 

  • Koch CC, Ovid’ko IA, Seal S, Veprek S (2007) Structural nanocrystalline materials. Fundamental and applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lecis N, Ugues D, Previtali B, Demir AG (2012) Fiber laser surface texturing of PVD coatings and their tribological behavior. Metall Ital 6:15–19

    Google Scholar 

  • Liu J (2005) High-resolution scanning electron microscopy. In: Yao N, Wang ZL (eds) Handbook of microscopy for nanotechnology. Kluwer, Boston/Dordrecht/New York/London, pp 325–360

    Chapter  Google Scholar 

  • Lukaszkowicz K, Dobrzański LA (2008) Structure and mechanical properties of gradient coatings deposited by PVD techniques onto the X40CrMoV5-1 steel substrate. J Mater Sci 43:4300–4307

    Article  Google Scholar 

  • Lukaszkowicz K, Pancielejko M (2012) Microstructure and tribological properties of PVD coatings deposited on the X40CrMoV5-1 steel substrate. Int J Surf Sci Eng 4(6):296–305

    Article  Google Scholar 

  • Lukaszkowicz K, Dobrzański LA, Zarychta A (2004) Structure, chemical and phase composition of coatings deposited by reactive magnetron sputtering onto the brass substrate. J Mater Process Technol 157–158:380–387

    Article  Google Scholar 

  • Lukaszkowicz K, Szewczenko J, Pancielejko M (2010a) Structure, mechanical properties and corrosion resistance of PVD gradient coatings deposited onto the X40CrMoV5-1 hot work tool steel substrates. Int J Mater Prod Technol 39:148–158

    Article  Google Scholar 

  • Lukaszkowicz K, Sondor J, Kriz A, Pancielejko M (2010b) Structure, mechanical properties and corrosion resistance of nanocomposite coatings deposited by PVD technology onto the X6CrNiMoTi17-12-2 and X40CrMoV5-1 steel substrates. J Mater Sci 45:1629–1637

    Article  Google Scholar 

  • Lukaszkowicz K, Czyżniewski A, Kwaśny W, Pancielejko M (2012a) Structure and mechanical properties of PVD coatings deposited onto the X40CrMoV5-1 hot work tool steel substrate. Vacuum 86:1186–1194

    Article  Google Scholar 

  • Lukaszkowicz K, Dobrzański LA, Kokot G, Ostachowski P (2012b) Characterization and properties of PVD coatings applied to extrusion dies. Vacuum 86:2082–2088

    Article  Google Scholar 

  • Magonov SN, Yerina NA (2005) Visualization of nanostructures with atomic force microscopy. In: Yao N, Wang ZL (eds) Handbook of microscopy for nanotechnology. Kluwer, Boston/Dordrecht/New York/London, pp 427–454

    Google Scholar 

  • Materials Evaluation and Engineering, Inc. (2010) Scanning electron microscopy. In: Handbook of analytical methods for materials. Materials Evaluation and Engineering, Inc, Plymouth

    Google Scholar 

  • Mattox DM (2010) Handbook of physical vapor deposition (PVD) processing, 2nd edn. William Andrew, Burlington

    Google Scholar 

  • Mishra SK, Pandey S, Mahato P, Shravan Kumar K, Bysakh S, Sreemany M, Pathak LC (2012) Microstructural studies on EB-PVD deposited NiCrAlY, YSZ and lanthanum zirconate for thermal barrier applications. Surf Coat Technol 207:143–148

    Article  Google Scholar 

  • Mo JL, Zhu MH, Lei B, Leng YX, Huang N (2007) Comparison of tribological behaviours of AlCrN and TiAlN coatings - deposited by physical vapor deposition. Wear 263:1423–1429

    Article  Google Scholar 

  • Musil J (2012) Hard nanocomposite coatings: thermal stability, oxidation resistance and toughness. Surf Coat Technol 207:50–65

    Article  MathSciNet  Google Scholar 

  • PalDey S, Deevi SC (2003) Single layer and multilayer wear resistant coatings of (Ti, Al)N: a review. Mater Sci Eng A 342:59–79

    Article  Google Scholar 

  • Rafaja D, Poklad A, Klemm V, Schreiber G, Heger D, Sima M, Dopita M (2006) Some consequence of the partial crystallographic coherence between nanocrystalline domains in Ti-Al-N and Ti-Al-Si-N coatings. Thin Solid Films 514:240–249

    Article  Google Scholar 

  • Rosso M, Ugues D, Torres E, Perucca M, Kapranos P (2008) Performance enhancements of die casting tools trough PVD nanocoatings. Int J Mater Form 1(1):1259–1262

    Article  Google Scholar 

  • Smith DJ (2005) High-resolution transmission electron microscopy. In: Yao N, Wang ZL (eds) Handbook of microscopy for nanotechnology. Kluwer, Boston/Dordrecht/New York/London, pp 427–454

    Chapter  Google Scholar 

  • Sree Harsha KS (2006) Principles of physical vapor deposition of thin films. Elsevier, Kidlington

    Google Scholar 

  • Subramanian B, Ananthakumar R, Yugeswaran S, Jayachandran M, Takahashi M, Kobayashi A (2013) Suitability evaluation of plasma ion beam sputtered TiN/TiOxNy multilayers on steel for bio implants. Vacuum 88:108–113

    Article  Google Scholar 

  • Tjong SS, Chen H (2004) Nanocrystalline materials and coatings. Mater Sci Eng R 45:1–88

    Article  Google Scholar 

  • Vavra I, Krizanova Z, Derer J, Humlicek J (2012) Mo/SiO2 nanocomposite films for optical coatings prepared by vacuum magnetron sputtering. Vacuum 86:742–744

    Article  Google Scholar 

  • Veprek S (1997) Conventional and new approaches towards the design of novel superhard materials. Surf Coat Technol 97:15–22

    Article  Google Scholar 

  • Veprek S, Veprek-Heijman MJG (2008) Industrial applications of superhard nanocomposite coatings. Surf Coat Technol 202(21):5063–5073

    Article  Google Scholar 

  • Veprek S, Mannling HD, Karvankova P, Prochazka J (2006) The issue of the reproducibility of deposition of superhard nanocomposites with hardness of ≥ 50 GPa. Surf Coat Technol 201:6064–6070

    Article  Google Scholar 

  • Voevodin AA, Jones JG, Back TC, Zabinski JS, Strel’nitzki VE, Aksenov II (2005a) Comparative study of wear-resistant DLC and fullerene-like CNx coatings produced by pulsed laser and filtered cathodic arc deposition. Surf Coat Technol 197:116–125

    Article  Google Scholar 

  • Voevodin AA, Zabinski JS, Muratore C (2005b) Recent advances in hard, tough, and low friction nanocomposite coatings. Tsinghua Sci Technol 10(6):665–679

    Article  Google Scholar 

  • Wang P, Takeno T, Adachi K, Miki H, Takagi T (2012) Preparation and tribological characterization of amorphous carbon nitride coatings in a RF PECVD–DC PVD hybrid coating process. Appl Surf Sci 258:6576–6582

    Article  Google Scholar 

  • Zhang S, Sun D, Bui X (2007) Magnetron sputtered hard and yet tough nanocomposite coatings with case studies: nanocrystalline TiN embedded in amorphous SiNX. In: Zhang S, Ali N (eds) Nanocomposite thin films and coatings. Imperial College Press, London, pp 1–110

    Chapter  Google Scholar 

  • Zou CW, Wang HJ, Li M, Yu YF, Liu CS, Guo LP, Fu DJ (2010) Characterization and properties of TiN-containing amorphous Ti–Si–N nanocomposite coatings prepared by arc assisted middle frequency magnetron sputtering. Vacuum 84:817–822

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leszek A. Dobrzański .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this entry

Cite this entry

Dobrzański, L.A., Gołombek, K., Lukaszkowicz, K. (2015). Physical Vapor Deposition in Manufacturing. In: Nee, A. (eds) Handbook of Manufacturing Engineering and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-4670-4_29

Download citation

Publish with us

Policies and ethics