Properties and Applications of Polymer Nanocomposite

  • Alok ChaurasiaEmail author
  • Yu Suzhu
  • Cheng Kuo Feng Henry
  • Vishal Tukaram Mogal
  • Sampa Saha
Reference work entry


Chapter 3, “Polymer Surface Treatment and Coating Technologies” mainly discusses the extensive studies which have been carried out on properties and applications of polymer and polymer nanocomposites in the field of bioelectronics. It also highlights on some of the interesting engineering applications such as high-performance composites used in aerospace application. In addition to that, we briefly talked about biodegradable as well as biocompatible polymers which have gained significant attention due to its widespread use in the preparation of biocomposites for various biomedical as well as agricultural applications. Next part of the discussion emphasizes on conducting polymer composite mainly on carbon nanotube (CNT)/polymer composite because of continuous interest in the use of polymers (conjugate) for fabrication of numerous light and/or foldable electronic devices and they are also extremely promising candidates for sensor applications. It also focused on the application of polymer and polymer nanocomposites for packaging areas. The main advantages of plastics as compared with other packaging materials are that they are lightweight and low cost and have good processability, high transparency and clarity, as well as good barrier properties with respect to water vapor, gases, and fats. Our discussion on polymer composite ends with its utility in automotive applications. Because they are lightweight and due to their property tailorability, design flexibility, and processability, polymers and polymer composites have been widely used in automotive industry to replace some heavy metallic materials.


Carbon Nanotubes Impact Strength Percolation Threshold Polymer Nanocomposites Polymer Brush 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. (2005) Polym Autom Ind Polym 3(11+12):20Google Scholar
  2. A.T. Kearney Inc (2012) Plastics: the future for automakers and chemical companiesGoogle Scholar
  3. Agarwal S (2012) 5.15 – Biodegradable polyesters. In: Krzysztof M, Martin M (eds) Polymer science: a comprehensive reference. Elsevier, Amsterdam, pp 333–361Google Scholar
  4. Ajayan PM, Stephan O, Colliex C, Trauth D (1994) Science 265(5176):1212–1214Google Scholar
  5. Alamri H, Low IM (2012) Polym Test 31(6):810–818Google Scholar
  6. Aldor IS, Keasling JD (2003) Curr Opin Biotechnol 14(5):475–483Google Scholar
  7. Alok C, Gan LH, Hu X (2011) Dramatic solvent effect on interaction kinetics and self-organization of phenyl-C61 butyric acid methyl ester in a triblock copolymer. Macromol Chem Phys 212(8):813–820Google Scholar
  8. APME (1999) Plastics a material of choice for the automotive industry. APMEGoogle Scholar
  9. Artukovic E, Kaempgen M, Hecht DS, Roth S, Grüner G (2005) Nano Lett 5(4):757–760Google Scholar
  10. Assouline E, Lustiger A, Barber AH, Cooper CA, Klein E, Wachtel E, Wagner HD (2003) J Polym Sci B 41(5):520–527Google Scholar
  11. Averous L, Boquillon N (2004) Carbohydr Polym 56(2):111–122Google Scholar
  12. Azzaroni O, Moya S, Farhan T, Brown AA, Huck WTS (2005) Macromolecules 38(24):10192–10199Google Scholar
  13. Bai JB, Allaoui A (2003) Compos A Appl Sci Manuf 34(8):689–694Google Scholar
  14. Basilia BA, Mendoza HD, Cada LG (2002) Philipp Eng J 22(2):19–34Google Scholar
  15. Baughman RH, Zakhidov AA, de Heer WA (2002) Science 297(5582):787–792Google Scholar
  16. Bekyarova E, Itkis ME, Cabrera N, Zhao B, Yu A, Gao J, Haddon RC (2005) J Am Chem Soc 127(16):5990–5995Google Scholar
  17. Bhattacharya SS, Chaudhari SB (2013) Int J Eng Res Dev 7(6):01–05Google Scholar
  18. Bhattacharyya AR, Sreekumar TV, Liu T, Kumar S, Ericson LM, Hauge RH, Smalley RE (2003) Polymer 44(8):2373–2377Google Scholar
  19. Blanchet GB, Subramoney S, Bailey RK, Jaycox GD, Nuckolls C (2004) Appl Phys Lett 85(5):828–830Google Scholar
  20. Bordes P, Pollet E, Avérous L (2009) Prog Polym Sci 34(2):125–155Google Scholar
  21. Bryning MB, Islam MF, Kikkawa JM, Yodh AG (2005) Adv Mater 17(9):1186–1191Google Scholar
  22. Byrne MT, McNamee WP, Gun’ko YK (2008) Nanotechnology 19(41):415707Google Scholar
  23. Chaurasia A, Wang L, Gan LH, Mei T, Li Y, Liang YN, Hu X (2012) Eur Polym J 49(3):630–636Google Scholar
  24. Chen J, Liu H, Weimer WA, Halls MD, Waldeck DH, Walker GC (2002) J Am Chem Soc 124(31):9034–9035Google Scholar
  25. Cheung W, Chiu PL, Parajuli RR, Ma Y, Ali SR, He H (2009) J Mater Chem 19(36):6465–6480Google Scholar
  26. Chieng BW, Ibrahim NA, Wan Yunus WMZ, Hussein MZ, Silverajah VSG (2012) Int J Mol Sci 13(9):10920–10934Google Scholar
  27. Cho JW, Kim JW, Jung YC, Goo NS (2005) Macromol Rapid Commun 26(5):412–416Google Scholar
  28. Choi ES, Brooks JS, Eaton DL, Al-Haik MS, Hussaini MY, Garmestani H, Li D, Dahmen K (2003) J Appl Phys 94(9):6034–6039Google Scholar
  29. Cochet M, Maser WK, Benito AM, Callejas MA, Martinez MT, Benoit J-M, Schreiber J, Chauvet O (2001) Chem Commun 16:1450–1451Google Scholar
  30. Colbert D, Smalley R (2002) Past, present and future of fullerene nanotubes: buckytubes. In: Perspectives of fullerene nanotechnology. Springer, Netherlands, pp 3–10Google Scholar
  31. Coleman JN, Khan U, Gun'ko YK (2006) Adv Mater 18(6):689–706Google Scholar
  32. Dai L, Mau AWH (2001) Adv Mater 13(12–13):899–913Google Scholar
  33. Dalton AB, Stephan C, Coleman JN, McCarthy B, Ajayan PM, Lefrant S, Bernier P, Blau WJ, Byrne HJ (2000) J Phys Chem B 104(43):10012–10016Google Scholar
  34. Dasari A, Yu Z-Z, Mai Y-W (2005) Polymer 46(16):5986–5991Google Scholar
  35. Dean KM, Do MD, Petinakis E, Yu L (2008) Compos Sci Technol 68(6):1453–1462Google Scholar
  36. Desai AV, Haque MA (2005) Thin-Walled Struct 43(11):1787–1803Google Scholar
  37. Diao YY, Liu H, Fu YH (2011) Int J Nanomed 6Google Scholar
  38. Ding B, Wang M, Yu J, Sun G (2009) Sensors 9(3):1609–1624Google Scholar
  39. Donnet JB, Bansal RC, Wang MJ (1993) Carbon black: science and technology. Taylor & Francis, New YorkGoogle Scholar
  40. Du F, Fischer JE, Winey KI (2003) J Polym Sci B 41(24):3333–3338Google Scholar
  41. Du F, Scogna RC, Zhou W, Brand S, Fischer JE, Winey KI (2004) Macromolecules 37(24):9048–9055Google Scholar
  42. Emamifar A, Kadivar M, Shahedi M, Soleimanian-Zad S (2011) Food Control 22(3–4):408–413Google Scholar
  43. Ericson LM, Fan H, Peng H, Davis VA, Zhou W, Sulpizio J, Wang Y, Booker R, Vavro J, Guthy C, Parra-Vasquez AN, Kim MJ, Ramesh S, Saini RK, Kittrell C, Lavin G, Schmidt H, Adams WW, Billups WE, Pasquali M, Hwang WF, Hauge RH, Fischer JE, Smalley RE (2004) Science 305(5689):1447–1450Google Scholar
  44. Feldman AK, Colasson B, Fokin VV (2004) Org Lett 6(22):3897–3899Google Scholar
  45. Ferrer-Anglada N, Kaempgen M, Roth S (2006) Phys Status Solidi (b) 243(13):3519–3523Google Scholar
  46. Fong N, Simmons A, Poole-Warren L (2011) Elastomeric nanocomposites for biomedical applications. In: Mittal V, Kim JK, Pal K (eds) Recent advances in elastomeric nanocomposites, vol 9. Springer, Berlin/Heidelberg, pp 255–278Google Scholar
  47. Fornes TD, Baur JW, Sabba Y, Thomas EL (2006) Polymer 47(5):1704–1714Google Scholar
  48. Frost & Sullivan (2005) Frost & Sullivan report: lightweight materials for automotive applicationsGoogle Scholar
  49. Fulghum TM, Taranekar P, Advincula RC (2008) Macromolecules 41(15):5681–5687Google Scholar
  50. Gao M, Dai L, Wallace GG (2003) Electroanalysis 15(13):1089–1094Google Scholar
  51. Gao H, Louche G, Sumerlin BS, Jahed N, Golas P, Matyjaszewski K (2005) Macromolecules 38(22):8979–8982Google Scholar
  52. Gao Y, Li X, Gong J, Fan B, Su Z, Qu L (2008) J Phys Chem C 112(22):8215–8222Google Scholar
  53. Gardner J, Bartlett P, Persaud KC, Pelosi P (1992) Sensor arrays using conducting polymers for an artificial nose. In: Sensors and sensory systems for an electronic nose, vol 212. Springer, Netherlands, pp 237–256Google Scholar
  54. Geng H-Z, Kim KK, So KP, Lee YS, Chang Y, Lee YH (2007) J Am Chem Soc 129(25):7758–7759Google Scholar
  55. Georgakilas V, Kordatos K, Prato M, Guldi DM, Holzinger M, Hirsch A (2002) J Am Chem Soc 124(5):760–761Google Scholar
  56. Gruner G (2006) J Mater Chem 16(35):3533–3539Google Scholar
  57. Guigo N, Vincent L, Mija A, Naegele H, Sbirrazzuoli N (2009) Compos Sci Technol 69(11–12):1979–1984Google Scholar
  58. Hamzehlou S, Katbab AA (2007) J Appl Polym Sci 106(2):1375–1382Google Scholar
  59. Hernández-Pérez A, Avilés F, May-Pat A, Valadez-González A, Herrera-Franco PJ, Bartolo-Pérez P (2008) Compos Sci Technol 68(6):1422–1431Google Scholar
  60. Hu L, Hecht DS, Grüner G (2004) Nano Lett 4(12):2513–2517Google Scholar
  61. Huang CL, Kumar S, Tan JJZ, Boey FYC, Venkatraman SS, Steele TWJ, Loo JSC (2013) Polym Degrad Stab 98(2):619–626Google Scholar
  62. Hule RA, Pochan DJ (2007) J Polym Sci B 45(3):239–252Google Scholar
  63. Huxtable ST, Cahill DG, Shenogin S, Xue L, Ozisik R, Barone P, Usrey M, Strano MS, Siddons G, Shim M, Keblinski P (2003) Nat Mater 2(11):731–734Google Scholar
  64. Iijima S (1991) Nature 354:3Google Scholar
  65. Istrate OM, Chen B (2012) J Appl Polym Sci 125(S1):E102–E112Google Scholar
  66. Janata J, Josowicz M (2003) Nat Mater 2(1):19–24Google Scholar
  67. Ji S, Li Y, Yang M (2008) Sens Actuators B 133(2):644–649Google Scholar
  68. Jiang B, Liu C, Zhang C, Wang B, Wang Z (2007) Compos B Eng 38(1):24–34Google Scholar
  69. Jin L, Bower C, Zhou O (1998) Appl Phys Lett 73(9):1197–1199Google Scholar
  70. Joanny JF (1992) Langmuir 8(3):989–995Google Scholar
  71. Kaempgen M, Duesberg GS, Roth S (2005) Appl Surf Sci 252(2):425–429Google Scholar
  72. Karus M, Ortmann S, Gahle C, Pendarovski C (2006) Use of natural fibres in composites for the German automotive production from 1999 till 2005 nova-InstitutGoogle Scholar
  73. Kelnar I, Kotek J, Kaprálková L, Munteanu BS (2005) Polyamide nanocomposites with improved toughness. J Appl Polym Sci 96(2):288–293Google Scholar
  74. Kim KH, Jo WH (2009) Carbon 47(4):1126–1134Google Scholar
  75. Kobayashi T, Yoneyama H, Tamura H (1984) J Electroanal Chem Interfacial Electrochem 161(2):419–423Google Scholar
  76. Kolb HC, Finn MG, Sharpless KB (2001) Angew Chem Int Ed 40(11):2004–2021Google Scholar
  77. Kong B, Lee JK, Choi IS (2007) Langmuir 23(12):6761–6765Google Scholar
  78. Kordás K, Mustonen T, Tóth G, Jantunen H, Lajunen M, Soldano C, Talapatra S, Kar S, Vajtai R, Ajayan PM (2006) Small 2(8–9):1021–1025Google Scholar
  79. Koval’chuk AA, Shevchenko VG, Shchegolikhin AN, Nedorezova PM, Klyamkina AN, Aladyshev AM (2008) Macromolecules 41(20):7536–7542Google Scholar
  80. Kovtyukhova NI, Mallouk TE (2005) J Phys Chem B 109(7):2540–2545Google Scholar
  81. Krishnamoorti R, Giannelis EP (1997) Macromolecules 30(14):4097–4102Google Scholar
  82. Kuriakose B, De SK, Bhagawan SS, Sivaramkrishnan R, Athithan SK (1986) J Appl Polym Sci 32(6):5509–5521Google Scholar
  83. Lahann J, Mitragotri S, Tran TN, Kaido H, Sundaram J, Choi IS, Hoffer S, Somorjai GA, Langer R (2003) Science 299(5605):371–374Google Scholar
  84. LeBaron PC, Wang Z, Pinnavaia TJ (1999) Appl Clay Sci 15(1–2):11–29Google Scholar
  85. Lee BS, Lee JK, Kim W-J, Jung YH, Sim SJ, Lee J, Choi IS (2007) Biomacromolecules 8(2):744–749Google Scholar
  86. Lee SY, Chen H, Hanna MA (2008) Ind Crops Prod 28(1):95–106Google Scholar
  87. Lewis WG, Green LG, Grynszpan F, Radic Z, Carlier PR, Taylor P, Finn MG, Sharpless KB (2002) Angew Chem Int Ed Engl 41(6):1053–1057Google Scholar
  88. Li Y, Sun XS (2011) J Biobased Mater Bioenerg 5(4):452–459Google Scholar
  89. Li X-h, Wu B, Huang J-E, Zhang J, Liu Z-F, Li H-l (2003) Carbon 41(8):1670–1673Google Scholar
  90. Li J, Hu L, Wang L, Zhou Y, Grüner G, Marks TJ (2006) Nano Lett 6(11):2472–2477Google Scholar
  91. Li R, Zhang H, Qi Q (2007a) Bioresour Technol 98(12):2313–2320Google Scholar
  92. Li J, Ma PC, Chow WS, To CK, Tang BZ, Kim JK (2007b) Adv Funct Mater 17(16):3207–3215Google Scholar
  93. Liang Y, Omachinski S, Logsdon J, Whan Cho J, Lan T (2008) Nano-effect in in situ nylon-6 nanocomposites. Nanocor technical papersGoogle Scholar
  94. Liu L, Wagner HD (2005) Compos Sci Technol 65(11–12):1861–1868Google Scholar
  95. Liu X, Wu Q (2002) Polyamide 66/clay nanocomposites via melt intercalation. Macromol Mater Eng 287(3):180–186Google Scholar
  96. Liu H, Kameoka J, Czaplewski DA, Craighead HG (2004) Nano Lett 4(4):671–675Google Scholar
  97. Liu Z-Q, Ma J, Cui Y–H (2008) Carbon 46(6):890–897Google Scholar
  98. Liu H, Han C, Dong L (2010) J Appl Polym Sci 115(5):3120–3129Google Scholar
  99. Lozano K, Bonilla-Rios J, Barrera EV (2001) J Appl Polym Sci 80(8):1162–1172Google Scholar
  100. Ma Y, Ali SR, Wang L, Chiu PL, Mendelsohn R, He H (2006a) J Am Chem Soc 128(37):12064–12065Google Scholar
  101. Ma Y, Ali SR, Dodoo AS, He H (2006b) J Phys Chem B 110(33):16359–16365Google Scholar
  102. Ma PC, Kim J-K, Tang BZ (2007) Compos Sci Technol 67(14):2965–2972Google Scholar
  103. Ma Y, Chiu PL, Serrano A, Ali SR, Chen AM, He H (2008a) J Am Chem Soc 130(25):7921–7928Google Scholar
  104. Ma PC, Tang BZ, Kim J-K (2008b) Carbon 46(11):1497–1505Google Scholar
  105. Ma PC, Liu MY, Zhang H, Wang SQ, Wang R, Wang K, Wong YK, Tang BZ, Hong SH, Paik KW, Kim JK (2009) ACS Appl Mater Interfaces 1(5):1090–1096Google Scholar
  106. Ma P–C, Siddiqui NA, Marom G, Kim J-K (2010) Compos A Appl Sci Manuf 41(10):1345–1367Google Scholar
  107. Manchado MAL, Valentini L, Biagiotti J, Kenny JM (2005) Carbon 43(7):1499–1505Google Scholar
  108. Manesh KM, Gopalan AI, Kwang-Pill L, Santhosh P, Kap-Duk S, Duk-Dong L (2007) Nanotechnol IEEE Trans 6(5):513–518Google Scholar
  109. Meng H, Sui GX, Fang PF, Yang R (2008) Polymer 49(2):610–620Google Scholar
  110. Messersmith PB, Giannelis EP (1994) Chem Mater 6(10):1719–1725Google Scholar
  111. Messersmith PB, Giannelis EP (1995) J Polym Sci A Polym Chem 33(7):1047–1057Google Scholar
  112. Milner ST (1991) Science 251(4996):905–914Google Scholar
  113. Moniruzzaman M, Winey KI (2006) Macromolecules 39(16):5194–5205Google Scholar
  114. Mora-Huertas CE, Fessi H, Elaissari A (2010) Polymer-based nanocapsules for drug delivery. Int J Pharm 385(1–2):113–142Google Scholar
  115. Mosqueira VCF, Legrand P, Gulik A, Bourdon O, Gref R, Labarre D, Barratt G (2001) Biomaterials 22(22):2967–2979Google Scholar
  116. Moya S, Azzaroni O, Farhan T, Osborne VL, Huck WTS (2005) Angew Chem Int Ed 44(29):4578–4581Google Scholar
  117. Nemati M, Khademieslam H, Talaiepour M, Ghasemi I, Bazyar B (2013) Investigation on the mechanical properties of nanocomposite based on wood flour/recycle polystyrene and nanoclay. J Basic Appl Sci Res 3(3):688–692Google Scholar
  118. Oprea S, Gradinariu P, Joga A, Oprea V (2013) Polym Degrad Stab 98(8):1481–1488Google Scholar
  119. Ourique AF, Pohlmann AR, Guterres SS, Beck RCR (2008) Int J Pharm 352(1–2):1–4Google Scholar
  120. Paiva MC, Zhou B, Fernando KAS, Lin Y, Kennedy JM, Sun YP (2004) Carbon 42(14):2849–2854Google Scholar
  121. Pan Y, Cheng HKF, Li L, Chan SH, Zhao J, Juay YK (2010) J Polym Sci B 48(21):2238–2247Google Scholar
  122. Park C, Ounaies Z, Watson KA, Crooks RE, Smith J Jr, Lowther SE, Connell JW, Siochi EJ, Harrison JS, Clair TLS (2002) Chem Phys Lett 364(3–4):303–308Google Scholar
  123. Park H-M, Liang X, Mohanty AK, Misra M, Drzal LT (2004) Macromolecules 37(24):9076–9082Google Scholar
  124. Park SJ, Choi J-I, Lee SY (2005) Enzyme Microb Technol 36(4):579–588Google Scholar
  125. Park C, Wilkinson J, Banda S, Ounaies Z, Wise KE, Sauti G, Lillehei PT, Harrison JS (2006) J Polym Sci B 44(12):1751–1762Google Scholar
  126. Polymer nanocomposites drive opportunities in the automotive sector.
  127. Qian D, Dickey EC, Andrews R, Rantell T (2000) Appl Phys Lett 76(20):2868–2870Google Scholar
  128. Qian D, Yu M-F, Ruoff RS, Wagner GJ, Liu WK (2002) Appl Mech Rev 55(6):495–533Google Scholar
  129. Quillard S, Louarn G, Lefrant S, Macdiarmid AG (1994) Phys Rev B 50(17):12496–12508Google Scholar
  130. Ramanathan K, Bangar MA, Yun M, Chen W, Myung NV, Mulchandani A (2004) J Am Chem Soc 127(2):496–497Google Scholar
  131. Ramasubramaniam R, Chen J, Liu H (2003) Appl Phys Lett 83(14):2928–2930Google Scholar
  132. Raphael E, De Gennes PG (1992) J Phys Chem 96(10):4002–4007Google Scholar
  133. Reddy CSK, Ghai R, Rashmi T, Kalia VC (2003) Bioresour Technol 87(2):137–146Google Scholar
  134. Rowell MW, Topinka MA, McGehee MD, Prall H-J, Dennler G, Sariciftci NS, Hu L, Gruner G (2006) Appl Phys Lett 88(23):233506–233506-3Google Scholar
  135. Saha S, Bruening ML, Baker GL (2012) Macromolecules 45(22):9063–9069Google Scholar
  136. Sahoo NG, Rana S, Cho JW, Li L, Chan SH (2010) Prog Polym Sci 35(7):837–867Google Scholar
  137. Sainz R, Benito AM, Martínez MT, Galindo JF, Sotres J, Baró AM, Corraze B, Chauvet O, Maser WK (2005) Adv Mater 17(3):278–281Google Scholar
  138. Sandler J, Shaffer MSP, Prasse T, Bauhofer W, Schulte K, Windle AH (1999) Polymer 40(21):5967–5971Google Scholar
  139. Sandler JKW, Kirk JE, Kinloch IA, Shaffer MSP, Windle AH (2003) Polymer 44(19):5893–5899Google Scholar
  140. Schadler LS (2004) Polymer-based and polymer-filled nanocomposites. In: Nanocomposite science and technology. Wiley-VCH Verlag GmbH & Co. KGaA, pp 77–153Google Scholar
  141. Shaffer MSP, Windle AH (1999) Adv Mater 11(11):937–941Google Scholar
  142. Shah RR, Merreceyes D, Husemann M, Rees I, Abbott NL, Hawker CJ, Hedrick JL (2000) Macromolecules 33(2):597–605Google Scholar
  143. Shi X, Hudson JL, Spicer PP, Tour JM, Krishnamoorti R, Mikos AG (2006) Biomacromolecules 7(7):2237–2242Google Scholar
  144. Shikinami Y, Matsusue Y, Nakamura T (2005) Biomaterials 26(27):5542–5551Google Scholar
  145. Shim BS, Tang Z, Morabito MP, Agarwal A, Hong H, Kotov NA (2007) Chem Mater 19(23):5467–5474Google Scholar
  146. Simmons TJ, Hashim D, Vajtai R, Ajayan PM (2007) J Am Chem Soc 129(33):10088–10089Google Scholar
  147. Snaith HJ, Whiting GL, Sun B, Greenham NC, Huck WTS, Friend RH (2005) Nano Lett 5(9):1653–1657Google Scholar
  148. Song P, Cao Z, Cai Y, Zhao L, Fang Z, Fu S (2011) Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties. Polymer 52:4001–4010Google Scholar
  149. Sreekumar TV, Liu T, Kumar S, Ericson LM, Hauge RH, Smalley RE (2002) Chem Mater 15(1):175–178Google Scholar
  150. Star A, Stoddart JF, Steuerman D, Diehl M, Boukai A, Wong EW, Yang X, Chung S-W, Choi H, Heath JR (2001) Angew Chem Int Ed 40(9):1721–1725Google Scholar
  151. Steele TWJ, Huang CL, Kumar S, Irvine S, Boey FYC, Loo JSC, Venkatraman SS (2012) Acta Biomater 8(6):2263–2270Google Scholar
  152. Steinert BW, Dean DR (2009) Polymer 50(3):898–904Google Scholar
  153. Stutzmann N, Friend RH, Sirringhaus H (2003) Science 299(5614):1881–1884Google Scholar
  154. Sumerlin BS, Tsarevsky NV, Louche G, Lee RY, Matyjaszewski K (2005) Macromolecules 38(18):7540–7545Google Scholar
  155. Sumita M, Tsukumo Y, Miyasaka K, Ishikawa K (1983) J Mater Sci 18(6):1758–1764Google Scholar
  156. Sumita M, Shizuma T, Miyasaka K, Ishikawa K (1984) Rheologica Acta 23(4):396–400Google Scholar
  157. Suzhu Y (2012) Development of high performance ternary polymer composites for automotive applications. SIMTech project reportGoogle Scholar
  158. Szeteiová K (2010) Automotive materials: plastics in automotive markets today.
  159. Tamburri E, Orlanducci S, Terranova ML, Valentini F, Palleschi G, Curulli A, Brunetti F, Passeri D, Alippi A, Rossi M (2005) Carbon 43(6):1213–1221Google Scholar
  160. Tang X, Alavi S (2012) J Agric Food Chem 60(8):1954–1962Google Scholar
  161. Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chem Rev 106(3):1105–1136Google Scholar
  162. The Freedonia Group, Inc (2011) Green packagingGoogle Scholar
  163. Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee YH, Kim SG, Rinzler AG, Colbert DT, Scuseria GE, Tománek D, Fischer JE, Smalley R, Smalley RE (1996) Science 273(5274):483–487Google Scholar
  164. Thostenson ET, Chou T-W (2002) J Phys D Appl Phys 35(16):L77Google Scholar
  165. Thostenson ET, Ren Z, Chou T-W (2001) Compos Sci Technol 61(13):1899–1912Google Scholar
  166. Tian Y, Wu W-C, Chen C-Y, Strovas T, Li Y, Jin Y, Su F, Meldrum DR, Jen AKY (2010) J Mater Chem 20(9):1728–1736Google Scholar
  167. Tornøe CW, Christensen C, Meldal M (2002) J Org Chem 67(9):3057–3064Google Scholar
  168. Valentini L, Biagiotti J, Kenny JM, Santucci S (2003) J Appl Polym Sci 87(4):708–713Google Scholar
  169. van Zanten JH (1994) Macromolecules 27(23):6797–6807Google Scholar
  170. Vert M, Li SM, Spenlehauer G, Guerin P (1992) J Mater Sci Mater Med 3(6):432–446Google Scholar
  171. Vidal A, Guyot A, Kennedy JP (1980) Polym Bull 2(5):315–320Google Scholar
  172. Wang Y, Iqbal Z, Mitra S (2005) J Am Chem Soc 128(1):95–99zbMATHGoogle Scholar
  173. Wang W, Fernando KAS, Lin Y, Meziani MJ, Veca LM, Cao L, Zhang P, Kimani MM, Sun Y-P (2008) J Am Chem Soc 130(4):1415–1419Google Scholar
  174. Whiting GL, Snaith HJ, Khodabakhsh S, Andreasen JW, Breiby DW, Nielsen MM, Greenham NC, Friend RH, Huck WT (2006) Nano Lett 6(3):573–578Google Scholar
  175. Wu Z, Chen Z, Du X, Logan JM, Sippel J, Nikolou M, Kamaras K, Reynolds JR, Tanner DB, Hebard AF, Rinzler AG (2004) Science 305(5688):1273–1276Google Scholar
  176. Wu F, Lan X, Ji D, Liu Z, Yang W, Yang M (2013) J Appl Polym Sci 129(5):3019–3027Google Scholar
  177. Xu R, Manias E, Snyder AJ, Runt J (2000) Macromolecules 34(2):337–339Google Scholar
  178. Yan XB, Han ZJ, Yang Y, Tay B-K (2007) J Phys Chem C 111(11):4125–4131Google Scholar
  179. Yang BX, Pramoda KP, Xu GQ, Goh SH (2007) Adv Funct Mater 17(13):2062–2069Google Scholar
  180. Yano K, Usuki A, Okada A, Kurauchi T, Kamigaito O (1993) J Polym Sci A Polym Chem 31(10):2493–2498Google Scholar
  181. Yu Z, Liu L (2005) J Biomater Sci Polym Ed 16(8):15Google Scholar
  182. Zengin H, Zhou W, Jin J, Czerw R, Smith DW, Echegoyen L, Carroll DL, Foulger SH, Ballato J (2002) Adv Mater 14(20):1480–1483Google Scholar
  183. Zhang X, Manohar SK (2004) J Am Chem Soc 126(40):12714–12715Google Scholar
  184. Zhang X, Goux WJ, Manohar SK (2004) J Am Chem Soc 126(14):4502–4503Google Scholar
  185. Zhang D, Ryu K, Liu X, Polikarpov E, Ly J, Tompson ME, Zhou C (2006a) Nano Lett 6(9):1880–1886Google Scholar
  186. Zhang Q, Rastogi S, Chen D, Lippits D, Lemstra PJ (2006b) Carbon 44(4):778–785Google Scholar
  187. Zheng M, Jagota A, Semke ED, Diner BA, McLean RS, Lustig SR, Richardson RE, Tassi NG (2003) Nat Mater 2(5):338–342Google Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • Alok Chaurasia
    • 1
    Email author
  • Yu Suzhu
    • 2
  • Cheng Kuo Feng Henry
    • 2
  • Vishal Tukaram Mogal
    • 1
  • Sampa Saha
    • 3
  1. 1.School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.Forming Technology GroupSingapore Institute of Manufacturing TechnologyAnn ArborSingapore
  3. 3.Department of ChemistryMichigan State UniversityAnn ArborUSA

Personalised recommendations