Skip to main content

Modular Robots

  • Reference work entry
  • First Online:
Handbook of Manufacturing Engineering and Technology

Abstract

Modularity is an important design concept in engineering to cope with complex systems. For robots used in the industrial environment, the complexity resides in the robot system as well as the tasks given to the robot. This chapter presents an up-to-date development in modular reconfigurable robots for the industry based on modular design principles. The scopes of the chapter cover the definition and classifications of modular robots; past and present research efforts in modular reconfigurable robots for the industry; basic modular design method including mechanical and interface issues; modular robot representation schemes for classifications and modeling; automatic model-generation techniques, kinematics, dynamics, and calibration; task-based configuration optimization; modular robot software; and a demonstration workcell based on reconfigurable modular robot for adaptability. In the concluding section, future perspective of modular robots for industrial applications is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ambrose RO (1995) Interactive robot joint design, analysis and prototyping. In: Proceedings of the IEEE international conference on robotics and automation, Washington, DC, pp 2119–2124

    Google Scholar 

  • Barrett Technology (2013) http://www.barrett.com/robot/index.htm

  • Benhabib B, Zak G, Lipton MG (1989) A generalized kinematic modeling method for modular robots. J Robot Syst 60(5):545–571

    Article  Google Scholar 

  • Chen I-M (1994) Theory and applications of modular reconfigurable robotic systems. PhD thesis, California Institute of Technology, Division of Engineering and Applied Science

    Google Scholar 

  • Chen I-M (1996) On optimal configuration of modular reconfigurable robots. In: Proceedings of the international conference on control, automation, robotics, and vision, Singapore, pp 1855–1859

    Google Scholar 

  • Chen I-M (2000) Realization of a rapidly reconfigurable robotic workcell. J Jpn Soc Precis Eng 66(7):1024–1030

    Article  Google Scholar 

  • Chen I-M (2001) Rapid response manufacturing through reconfigurable robotic workcells. J Robot Comput Integr Manuf 17(3):199–213

    Article  Google Scholar 

  • Chen I-M, Burdick JW (1995) Determining task optimal modular robot assembly configurations. In: Proceedings of the IEEE international conferene on robotics and automation, Nagoya, pp 132–137

    Google Scholar 

  • Chen I-M, Burdick JW (1998) Enumerating non-isomorphic assembly configurations of a modular robotic system. Int J Robot Res 17(7):702–719

    Article  Google Scholar 

  • Chen I-M, Yang G (1996) Configuration independent kinematics for modular robots. In: Proceedings of the IEEE international conference on robotics and automation, Minneapolis, pp 1845–1849

    Google Scholar 

  • Chen I-M, Yang G (1997) Kinematic calibration of modular reconfigurable robots using product-of-exponentials formula. J Robot Syst 14(11):807–821

    Article  MATH  Google Scholar 

  • Chen I-M, Yang G, Kang IG (1999a) Numerical inverse kinematics for modular reconfigurable robots. J Robot Syst 16(4):213–225

    Article  MATH  Google Scholar 

  • Chen I-M, Yeo SH, Chen G, Yang G (1999b) Kernel for modular robot applications – automatic modeling techniques. Int J Robot Res 18(2):225–242

    Article  Google Scholar 

  • Chen I-M, Yang G, Tan CT, Yeo SH (2001) A local POE model for robot kinematic calibration. Mech Mach Theory 36(11):1215–1239

    Article  MATH  Google Scholar 

  • Cohen R, Lipton M, Dai M, Benhabib B (1992) Conceptual design of a modular robot. ASME J Mech Des 25:114–117

    Google Scholar 

  • Cormen T, Leiserson C, Rivest R (1990) Introduction to algorithms. MIT Press, Cambridge, MA. ISBN 0262032937

    MATH  Google Scholar 

  • Deo N (1974) Graph theory with applications to engineering and computer science. Prentice-Hall, New York. ISBN 0133634736

    MATH  Google Scholar 

  • Dobrjanskyj L, Freudenstein F (1967) Some applications of graph theory to the structural analysis of mechanisms. ASME J Eng Ind 89:153–158

    Article  Google Scholar 

  • Featherstone R (1987) Robot dynamics algorithms. Kluwer, Holland. ISBN 0898382300

    Google Scholar 

  • Fukuda T, Nakagawa S (1988) Dynamically reconfigurable robot system. In: Proceedings of the IEEE international conferene on robotics automation, Philadelphia, pp 1581–1586

    Google Scholar 

  • Hollerbach JM (1980) A recursive lagrangian formulation of manipulator dynamics and a comparative study of dynamics formulation complexity. IEEE Trans Syst Man Cybern 10:730–736

    Article  MathSciNet  Google Scholar 

  • Kelmar L, Khosla P (1988) Automatic generation of kinematics for a reconfigurable modular manipulator system. In: Proceedings of the IEEE international conference on robotics and automation, Philadelphia, pp 663–668

    Google Scholar 

  • Khosla PK, Neuman C, Prinz F (1985) An algorithm for seam tracking applications. Int J Robot Res 40(1):27–41

    Article  Google Scholar 

  • Kinova Robotics-The JACO robot arm (2013) http://kinovarobotics.com/products/jaco-research-edition/

  • Kutzer MDM, Moses MS, Brown CY, Scheidt DH, Chirikjian GS, Armand M (2010) Design of a new independently-mobile reconfigurable modular robot. In: IEEE international conference on robotics and automation, pp 2758–2764

    Google Scholar 

  • Li B, Ma S, Liu J, Wang M, Liu T, Wang Y (2009) AMOEBA-I: a shape-shifting modular robot for urban search and rescue. J Adv Robot 23(9):1057–1083

    Article  Google Scholar 

  • Matsumaru T (1995) Design and control of the modular robot system: TOMMS. In: Proceedings of the IEEE international conference on robotics automation. Nagoya, pp 2125–2131

    Google Scholar 

  • Michalewicz Z (1994) Genetic algorithms + data structures = evolution programs, 2nd edn. Springer, Berlin. ISBN 540580905

    Book  MATH  Google Scholar 

  • Modular Robot – iMobot – Barobo (2013) http://www.barobo.com/

  • Moubarak P, Ben-Tzvi P (2012) Modular and reconfigurable mobile robotics. Robot Auton Syst 60:1648–1663

    Article  Google Scholar 

  • Murray R, Li Z, Sastry S (1994) A mathematical introduction to robotic manipulation. CRC Press, Boca Raton. ISBN 0849379814

    MATH  Google Scholar 

  • Paredis CJJ, Khosla PK (1995) Design of modular fault tolerant manipulators. In: Goldberg K (ed) Algorithmic foundations of robotics. A. K. Peters, Wellesley, pp 371–383. ISBN 1568810458

    Google Scholar 

  • Paredis C, Brown HB, Khosla P (1996) A rapidly deployable manipulator system. In: Proceedings of the IEEE international conference on robotics automation, pp 1434–1439

    Google Scholar 

  • Paredis CJJ, Brown HB, Khosla P (1997) A rapidly deployable manipulator system. Robot Auton Syst 21(3):289–304

    Article  Google Scholar 

  • Park FC, Bobrow JE (1994) A recursive algorithm for robot dynamics using lie groups. In: Proceedings of the IEEE international conference on robotics and automation, San Diego, pp 1535–1540

    Google Scholar 

  • Park FC, Bobrow JE, Ploen SR (1995) A lie group formulation of robot dynamics. Int J Robot Res 14(6):609–618

    Article  Google Scholar 

  • Robotnik (2013) http://robotnik.es/es/

  • Rodriguze G, Jain A, Kreutz-Delgado K (1991) A spatial operator algebra for manipulator modeling and control. Int J Robot Res 10(4):371–381

    Article  Google Scholar 

  • Schunk Modular Robotics (2013) www.schunk-modular-robotics.com

  • Tesar D, Butler MS (1989) A generalized modular architecture for robot structures. ASME J Manuf Rev 2(2):91–117

    Google Scholar 

  • Ulrich K (1995) The role of product architecture on the manufacturing firm. Res Policy 24:419–440

    Article  Google Scholar 

  • Universal Robots (2013) http://www.universal-robots.com/

  • Wang W, Yu W, Zhang H (2010) JL-2: a mobile multi-robot system with docking and manipulating capabilities. Int J Adv Robot Syst 7(1):9–18

    Google Scholar 

  • Wurst KH (1986) The conception and construction of a modular robot system. In: Proceedings of the 16th International Symposium on Industrial Robotics (ISIR), pp 37–44

    Google Scholar 

  • Yang G, Chen I-M (2000) Task-based optimization of modular robot configurations – MDOF approach. Mech Mach Theory 35(4):517–540

    Article  MATH  Google Scholar 

  • Yang G, Chen I.-M, Lim WK, Yeo SH (1999) Design and kinematic analysis of modular reconfigurable parallel robots. In: Proceedings of the IEEE international conference on robotics and automation, Detroit, pp 2501–2506

    Google Scholar 

  • Yang G, Chen I-M, Lim WK, Yeo SH (2001) Kinematic design of modular reconfigurable in-parallel robots. Auton Robot 10(1):83–89

    Article  MATH  Google Scholar 

Download references

Acknowledgment

The author would like to acknowledge works contributed by team members of the project: Prof. Song Huat Yeo, Prof. Guang Chen, Dr. Guilin Yang, Prof. Peter Chen, Prof. Weihai Chen, Dr. Wei Lin, Mr. In-Gyu Kang, Mr. Wee Kiat Lim, Mr. Edwin Ho, Mr. S. Ramachandran, Ms. Yan Gao, and Mr. Chee Tat Tan. The editorial assistance and update of the manuscript from Dr. Qilong Yuan is also appreciated. This project was financially supported by the Singapore Institute of Manufacturing Technology, Ministry of Education, Singapore, and Agency for Science, Technology and Research (ASTAR) SERC Grant 1225100005 under the Industrial Robotics Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I-Ming Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this entry

Cite this entry

Chen, IM. (2015). Modular Robots. In: Nee, A. (eds) Handbook of Manufacturing Engineering and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-4670-4_100

Download citation

Publish with us

Policies and ethics