Neuroprotection Strategies During Cardiopulmonary Bypass

Reference work entry

Abstract

The conduct of operative procedures for repair of congenital cardiac defects has evolved over time. Initially, intracardiac operations were performed with the aid of profound hypothermia and circulatory arrest. Over time, bypass and surgical techniques improved, obviating the need for deep hypothermic circulatory arrest for all but the most complex surgical procedures. Since the beginning, congenital cardiac diseases and the surgical intervention for these defects have been associated with neurologic dysfunction. The perioperative period has often been associated with the complication of neurologic injury, although it has become quite clear that the perioperative period is only one small point in time in which neurologic injury can occur. However, several important variables and techniques used for the management of congenital cardiac defects may help prevent neurologic injury. This chapter overviews some of the strategies utilized for neuroprotection.

Keywords

Catheter Filtration Ischemia Attenuation Creatinine 

References

  1. 1.
    Robertson CM, Joffe AR, Sauve RS et al (2004) Outcomes from an interprovincial program of newborn open heart surgery. J Pediatr 144:86–92PubMedCrossRefGoogle Scholar
  2. 2.
    Back SA, Riddle A, McClure MM (2007) Maturation-dependent vulnerability of perinatal white matter in premature birth. Stroke 38(Suppl 2):724–730PubMedCrossRefGoogle Scholar
  3. 3.
    Wernovsky G, Shillingford AJ, Gaynor JW (2005) Central nervous system outcomes in children with complex congenital heart disease. Curr Opin Cardiol 20:94–99PubMedCrossRefGoogle Scholar
  4. 4.
    Licht DJ, Shera DM, Clancy RR et al (2009) Brain maturation is delayed in infants with complexcongenital heart defects. J Thorac Cardiovasc Surg 137:529–537PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Mahle WT, Tavani F, Zimmerman RA et al (2002) An MRI study of neurological injury before and after congenital heart surgery. Circulation 106:I109–I114PubMedGoogle Scholar
  6. 6.
    Dent CL, Spaeth JP, Jones BV et al (2005) Brain magnetic resonance imaging abnormalities after the Norwood procedure using regional cerebral perfusion. J Thorac Cardiovasc Surg 130:1523–1530PubMedCrossRefGoogle Scholar
  7. 7.
    Galli KK, Zimmerman RA, Jarvik GP et al (2004) Periventricular leukomalacia is common after neonatal cardiac surgery. J Thorac Cardiovasc Surg 127:692–704PubMedCrossRefGoogle Scholar
  8. 8.
    Miller SP, McQuillen PS, Hamrick S et al (2007) Abnormal brain development in newborns with congenital heart disease. N Engl J Med 357:1928–1938PubMedCrossRefGoogle Scholar
  9. 9.
    Glauser TA, Rorke LB, Weinberg PM et al (1990) Congenital brain anomalies associated with the hypoplastic left heart syndrome. Pediatrics 85:984–990PubMedGoogle Scholar
  10. 10.
    Jones M (1991) Anomalies of the brain and congenital heart disease: a study of 52 necropsy cases. Pediatr Pathol 11:721–736PubMedCrossRefGoogle Scholar
  11. 11.
    Formigari R, Michielon G, Digilio MC et al (2009) Genetic syndromes and congenital heart defects: how is surgical management affected? Eur J Cardiothorac Surg 35:606–614PubMedCrossRefGoogle Scholar
  12. 12.
    Simsic JM, Coleman K, Maher KO et al (2009) Do neonates with genetic abnormalities have an increased morbidity and mortality following cardiac surgery? Congenit Heart Dis 4:160–165PubMedCrossRefGoogle Scholar
  13. 13.
    Fudge JC Jr, Li S, Jaggers J, O’Brien SM et al (2010) Congenital heart surgery outcomes in Down syndrome: analysis of a national clinical database. Pediatrics 126:315–322PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Burnham N, Ittenbach RF, Stallings VA et al (2010) Genetic factors are important determinants of impaired growth after infant cardiac surgery. J Thorac Cardiovasc Surg 140:144–149PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Fuller S, Nord AS, Gerdes M et al (2009) Predictors of impaired neurodevelopmental outcomes at one year of age after infant cardiac surgery. Eur J Cardiothorac Surg 36:40–47PubMedCrossRefGoogle Scholar
  16. 16.
    Gaynor JW, Gerdes M, Zackai EH et al (2003) Apolipoprotein E genotype and neurodevelopmental sequelae of infant cardiac surgery. J Thorac Cardiovasc Surg 126:1736–1745PubMedCrossRefGoogle Scholar
  17. 17.
    Langley SM, Chai PJ, Jaggers JJ et al (2000) Preoperative high dose methylprednisolone attenuates the cerebral response to deep hypothermic circulatory arrest. Eur J Cardiothorac Surg 17:279–286PubMedCrossRefGoogle Scholar
  18. 18.
    Langley SM, Chai PJ, Tsui SS et al (2000) The effects of a leukocyte-depleting filter on cerebral and renal recovery after deep hypothermic circulatory arrest. J Thorac Cardiovasc Surg 119:1262–1269PubMedCrossRefGoogle Scholar
  19. 19.
    Langley SM, Chai PJ, Jaggers JJ et al (1999) Platelet-activating factor receptor antagonism improves cerebral recovery after circulatory arrest. Ann Thorac Surg 68:1578–1585PubMedCrossRefGoogle Scholar
  20. 20.
    Hickey E, Karamlou T, You J et al (2007) The use of a miniaturized circuit and bloodless prime to avoid cerebral no-reflow following neonatal cardiopulmonary bypass. Ann Thorac Surg 83:895–901PubMedCrossRefGoogle Scholar
  21. 21.
    Langley SM, Chai PJ, Miller SE et al (1999) Intermittent perfusion protects the brain during deep hypothermic circulatory arrest. Ann Thorac Surg 68:4–13PubMedCrossRefGoogle Scholar
  22. 22.
    Fessatidis IT, Thomas VL, Shore DF et al (1993) Brain damage after profoundly hypothermic circulatory arrest: correlations between neurophysiologic and neuropathologic findings. An experimental study in vertebrates. J Thorac Cardiovasc Surg 106:32–41PubMedGoogle Scholar
  23. 23.
    Kin H, Ishibashi K, Nitatori T et al (1999) Hippocampal neuronal death following deep hypothermic circulatory arrest in dogs: involvement of apoptosis. Cardiovasc Surg 7:558–564PubMedCrossRefGoogle Scholar
  24. 24.
    Midulla PS, Gandsas A, Sadeghi AM et al (1994) Comparison of retrograde cerebral perfusion to antegrade cerebral perfusion and hypothermic circulatory arrest in a chronic porcine model. J Card Surg 9:560–575PubMedCrossRefGoogle Scholar
  25. 25.
    Arroyo S, Lesser RP, Gillinov AM et al (1993) EEG and prognosis of neurologic recovery of dogs under profound hypothermic circulatory arrest. Electroencephalogr Clin Neurophysiol 87:242–249PubMedCrossRefGoogle Scholar
  26. 26.
    Bellinger DC, Wypij D, duPlessis AJ et al (2003) Neurodevelopmental status at eight years in children with dextro-transposition of the great arteries: the Boston Circulatory Arrest Trial. J Thorac Cardiovasc Surg 126:1385–1396PubMedCrossRefGoogle Scholar
  27. 27.
    Wypij D, Newburger JW, Rappaport LA et al (2003) The effect of duration of deep hypothermic circulatory arrest in infant heart surgery on late neurodevelopment: the Boston Circulatory Arrest Trial. J Thorac Cardiovasc Surg 126:1397–1403PubMedCrossRefGoogle Scholar
  28. 28.
    Kirklin JK, Blackstone EH, Kirklin JW et al (1981) Intracardiac surgery in infants under age 3 months: predictors of postoperative in-hospital cardiac death. Am J Cardiol 48:507–512PubMedCrossRefGoogle Scholar
  29. 29.
    Corno AF (2002) What are the best temperature, flow, and hematocrit levels for pediatric cardiopulmonary bypass? J Thorac Cardiovasc Surg 124:856–857PubMedCrossRefGoogle Scholar
  30. 30.
    Swain JA, McDonald TJ Jr, Griffith PK et al (1991) Low-flow hypothermic cardiopulmonary bypass protects the brain. J Thorac Cardiovasc Surg 102:76–84PubMedGoogle Scholar
  31. 31.
    Bellinger DC, Jonas RA, Rappaport LA et al (1995) Developmental and neurologic status of children after heart surgery with hypothermic circulatory arrest or low-flow cardiopulmonary bypass. N Engl J Med 332:549–555PubMedCrossRefGoogle Scholar
  32. 32.
    Mezrow CK, Sadeghi AM, Gandsas A et al (1994) Cerebral effects of low-flow cardiopulmonary bypass and hypothermic circulatory arrest. Ann Thorac Surg 57:532–539PubMedCrossRefGoogle Scholar
  33. 33.
    Schwartz AE, Sandhu AA, Kaplon RJ et al (1995) Cerebral blood flow is determined by arterial pressure and not cardiopulmonary bypass flow rate. Ann Thorac Surg 60:165–170PubMedCrossRefGoogle Scholar
  34. 34.
    Myung RJ, Petko M, Judkins AR et al (2004) Regional low-flow perfusion improves neurologic outcome compared with deep hypothermic circulatory arrest in neonatal piglets. J Thorac Cardiovasc Surg 127:1051–1057PubMedCrossRefGoogle Scholar
  35. 35.
    Hagino I, Anttila V, Zurakowski D et al (2005) Tissue oxygenation index is a useful monitor of histologic and neurologic outcome after cardiopulmonary bypass in piglets. J Thorac Cardiovasc Surg 130:384–392PubMedCrossRefGoogle Scholar
  36. 36.
    Loepke AW, Golden JA, McCann JC et al (2005) Injury pattern of the neonatal brain after hypothermic low-flow cardiopulmonary bypass in a piglet model. Anesth Analg 101:340–348PubMedCrossRefGoogle Scholar
  37. 37.
    Mills NL, Ochsner JL (1980) Massive air embolism during cardiopulmonary bypass. Causes, prevention, and management. J Thorac Cardiovasc Surg 80:708–717PubMedGoogle Scholar
  38. 38.
    Ueda Y, Miki S, Kusuhara K et al (1990) Surgical treatment of aneurysm or dissection involving the ascending aorta and aortic arch, utilizing circulatory arrest and retrograde cerebral perfusion. J Cardiovasc Surg (Torino) 31:553–558Google Scholar
  39. 39.
    Estrera AL, Miller CC 3rd, Lee TY et al (2008) Ascending and transverse aortic arch repair: the impact of retrograde cerebral perfusion. Circulation 118(Suppl):S160–S166PubMedCrossRefGoogle Scholar
  40. 40.
    Pochettino A, Cheung AT (2003) Pro: retrograde cerebral perfusion is useful for deep hypothermic circulatory arrest. J Cardiothorac Vasc Anesth 17:764–767PubMedCrossRefGoogle Scholar
  41. 41.
    Reich DL, Uysal S (2003) Con: retrograde cerebral perfusion is not an optimal method of neuroprotection in thoracic aortic surgery. J Cardiothorac Vasc Anesth 17:768–769PubMedCrossRefGoogle Scholar
  42. 42.
    Esmailian F, Dox H, Sadeghi A et al (1999) Retrograde cerebral perfusion as an adjunct to prolonged hypothermic circulatory arrest. Chest 116:887–891PubMedCrossRefGoogle Scholar
  43. 43.
    Acikel U, Ugurlu BS, Karabay O et al (2000) Retrograde cerebral perfusion with hypothermic circulatory arrest in a child. Ann Thorac Surg 69:1243–1244PubMedCrossRefGoogle Scholar
  44. 44.
    Künzli A, Zingg PO, Zünd G et al (2006) Does retrograde cerebral perfusion via superior vena cava cannulation protect the brain? Eur J Cardiothorac Surg 30:906–909PubMedCrossRefGoogle Scholar
  45. 45.
    Schultz S, Antoni D, Shears G et al (2006) Brain oxygen and metabolism during circulatory arrest with intermittent brief periods of low-flow cardiopulmonary bypass in newborn piglets. J Thorac Cardiovasc Surg 132:839–844PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Mascio CE, Myers JA, Edmonds HL et al (2009) Near-infrared spectroscopy as a guide for an intermittent cerebral perfusion strategy during neonatal circulatory arrest. ASAIO J 55:287–290PubMedCrossRefGoogle Scholar
  47. 47.
    Corno AF, von Segesser LK (1999) Is hypothermia necessary in pediatric cardiac surgery? Eur J Cardiothorac Surg 15:110–111PubMedCrossRefGoogle Scholar
  48. 48.
    Durandy Y, Hulin S, Lecompte Y (2002) Normothermic cardiopulmonary bypass in pediatric surgery. J Thorac Cardiovasc Surg 123:194PubMedCrossRefGoogle Scholar
  49. 49.
    Caputo M, Bays S, Rogers CA et al (2005) Randomized comparison between normothermic and hypothermic cardiopulmonary bypass in pediatric open-heart surgery. Ann Thorac Surg 80:982–988PubMedCrossRefGoogle Scholar
  50. 50.
    Pouard P, Mauriat P, Ek F et al (2006) Normothermic cardiopulmonary bypass and myocardial cardioplegic protection for neonatal arterial switch operation. Eur J Cardiothorac Surg 30:695–699PubMedCrossRefGoogle Scholar
  51. 51.
    Caputo M, Patel N, Angelini GD et al (2011) Effect of normothermic cardiopulmonary bypass on renal injury in pediatric cardiac surgery: a randomized controlled trial. J Thorac Cardiovasc Surg 142:1114–1121PubMedCrossRefGoogle Scholar
  52. 52.
    Ly M, Roubertie F, Belli E et al (2011) Continuous cerebral perfusion for aortic arch repair: hypothermia versus normothermia. Ann Thorac Surg 92:942–948PubMedCrossRefGoogle Scholar
  53. 53.
    Imamaki M, Nakajima N, Masuda M et al (2005) Is it safe to initiate selective cerebral perfusion with normothermia? J Card Surg 20:408–411PubMedCrossRefGoogle Scholar
  54. 54.
    Anttila V, Hagino I, Zurakowski D et al (2004) Higher bypass temperature correlates with increased white cell activation in the cerebral microcirculation. J Thorac Cardiovasc Surg 127:1781–1788PubMedCrossRefGoogle Scholar
  55. 55.
    du Plessis AJ, Jonas RA, Wypij D et al (1997) Perioperative effects of alpha-stat versus pH-stat strategies for deep hypothermic cardiopulmonary bypass in infants. J Thorac Cardiovasc Surg 114:991–1001PubMedCrossRefGoogle Scholar
  56. 56.
    Bellinger DC, Wypij D, du Plessis AJ et al (2001) Developmental and neurologic effects of alpha-stat versus pH-stat strategies for deep hypothermic cardiopulmonary bypass in infants. J Thorac Cardiovasc Surg 121:374–383PubMedCrossRefGoogle Scholar
  57. 57.
    White FN (1981) A comparative physiological approach to hypothermia. J Thorac Cardiovasc Surg 82:821–831PubMedGoogle Scholar
  58. 58.
    Duebener LF, Hagino I, Sakamoto T et al (2002) Effects of pH management during deep hypothermic bypass on cerebral microcirculation: alpha-stat versus pH-stat. Circulation 106:l103–I108Google Scholar
  59. 59.
    Jaggers J, Ungerleider RM (2000) Cardiopulmonary bypass in infants and children. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 3:82–109PubMedCrossRefGoogle Scholar
  60. 60.
    Govier AV, Reves JG, McKay RD et al (1984) Factors and their influence on regional cerebral blood flow during nonpulsatile cardiopulmonary bypass. Ann Thorac Surg 38:592–600PubMedCrossRefGoogle Scholar
  61. 61.
    Patel RL, Turtle MR, Chambers DJ et al (1996) Alpha-stat acid–base regulation during cardiopulmonary bypass improves neuropsychologic outcome in patients undergoing coronary artery bypass grafting. J Thorac Cardiovasc Surg 111:1267–1279PubMedCrossRefGoogle Scholar
  62. 62.
    Patel RL, Turtle MR, Chambers DJ et al (1993) Hyperperfusion and cerebral dysfunction. Effect of differing acid–base management during cardiopulmonary bypass. Eur J Cardiothorac Surg 7:457–464PubMedCrossRefGoogle Scholar
  63. 63.
    Skaryak LA, Chai PJ, Kern FH et al (1995) Blood gas management and degree of cooling: effects on cerebral metabolism before and after circulatory arrest. J Thorac Cardiovasc Surg 110:1649–1657PubMedCrossRefGoogle Scholar
  64. 64.
    Bashein G, Townes BD, Nessly ML et al (1990) A randomized study of carbon dioxide management during hypothermic cardiopulmonary bypass. Anesthesiology 72:7–15PubMedCrossRefGoogle Scholar
  65. 65.
    Nagy ZL, Collins M, Sharpe T et al (2003) Effect of two different bypass techniques on the serum troponin-T levels in newborns and children: does pH-Stat provide better protection? Circulation 108:577–582PubMedCrossRefGoogle Scholar
  66. 66.
    Sakamoto T, Zurakowski D, Duebener LF et al (2004) Interaction of temperature with hematocrit level and pH determines safe duration of hypothermic circulatory arrest. J Thorac Cardiovasc Surg 128:220–232PubMedCrossRefGoogle Scholar
  67. 67.
    Hindman BJ, Dexter F, Cutkomp J et al (1995) pH-stat management reduces the cerebral metabolic Tate for oxygen during profound hypothermia (17 degrees C). A study during cardiopulmonary bypass in rabbits. Anesthesiology 82:983–995PubMedCrossRefGoogle Scholar
  68. 68.
    Greeley WJ, Ungerleider RM, Kern FH et al (1989) Effects of cardiopulmonary bypass on cerebral blood flow in neonates, infants, and children. Circulation 80:I209–I215PubMedGoogle Scholar
  69. 69.
    Dahlbacka S, Heikkinen J, Kaakinen T et al (2005) pH-stat versus alpha-stat acid–base management strategy during hypothermic circulatory arrest combined with embolic brain injury. Ann Thorac Surg 79:1316–1325PubMedCrossRefGoogle Scholar
  70. 70.
    Markowitz SD, Mendoza-Paredes A, Liu H et al (2007) Response of brain oxygenation and metabolism to deep hypothermic circulatory arrest in newborn piglets: comparison of pH-stat and alpha-stat strategies. Ann Thorac Surg 84:170–176PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Ootaki Y, Yamaguchi M, Yoshimura N, Oka S et al (2004) Efficacy of a criterion driven transfusion protocol in pediatric cardiac surgery patients. J Thorac Cardiovasc Surg 127:953–958PubMedCrossRefGoogle Scholar
  72. 72.
    Fang WC, Helm RE, Krieger KH et al (1997) Impact of minimum hematocrit during cardiopulmonary bypass on mortality in patients undergoing coronary artery surgery. Circulation 96:II194–II199Google Scholar
  73. 73.
    Groom RC (2002) High or low hematocrits during cardiopulmonary bypass for patients undergoing coronary artery bypass graft surgery? An evidence-based approach to the question. Perfusion 17:99–102PubMedCrossRefGoogle Scholar
  74. 74.
    Wabeke E, Elstrodt JM, Mook PH et al (1988) Clear prime for infant cardiopulmonary bypass: a miniaturized circuit. J Cardiovasc Surg (Torino) 29:117–122Google Scholar
  75. 75.
    Parry AJ, Petrossian E, McElhinney DB et al (2000) Neutrophil degranulation and complement activation during fetal cardiac bypass. Ann Thorac Surg 70:582–589PubMedCrossRefGoogle Scholar
  76. 76.
    Fukumura F, Kado H, Imoto Y et al (2004) Usefulness of low-priming-volume cardiopulmonary bypass circuits and dilutional ultrafiltration in neonatal open-heart surgery. J Artif Organs 7:9–12PubMedCrossRefGoogle Scholar
  77. 77.
    Fromes Y, Gaillard D, Ponzio O et al (2002) Reduction of the inflammatory response following coronary bypass grafting with total minimal extracorporeal circulation. Eur J Cardiothorac Surg 22:527–533PubMedCrossRefGoogle Scholar
  78. 78.
    Koster A, Huebler M, Boettcher W et al (2009) A new miniaturized cardiopulmonary bypass system reduces transfusion requirements during neonatal cardiac surgery: initial experience in 13 consecutive patients. J Thorac Cardiovasc Surg 137:1565–1568PubMedCrossRefGoogle Scholar
  79. 79.
    Jonas RA, Wypij D, Roth SJ et al (2003) The influence of hemodilution on outcome after hypothermic cardiopulmonary bypass: results of a randomized trial in infants. J Thorac Cardiovasc Surg 126:1765–1774PubMedCrossRefGoogle Scholar
  80. 80.
    Newburger JW, Jonas RA, Soul J et al (2008) Randomized trial of hematocrit 25 % versus 35 % during hypothermic cardiopulmonary bypass in infant heart surgery. J Thorac Cardiovasc Surg 135:347–354PubMedCrossRefGoogle Scholar
  81. 81.
    Nollert G, Sperling J, Sakamoto T et al (2001) Higher hematocrit improves liver blood flow and metabolism during cardiopulmonary bypass in piglets. Thorac Cardiovasc Surg 49:226–230PubMedCrossRefGoogle Scholar
  82. 82.
    Duebener LF, Sakamoto T, Hatsuoka S et al (2001) Effects of hematocrit on cerebral microcirculation and tissue oxygenation during deep hypothermic bypass. Circulation 104:1260–1264CrossRefGoogle Scholar
  83. 83.
    Sakamoto T, Nollert GD, Zurakowski D et al (2004) Hemodilution elevates cerebral blood flow and oxygen metabolism during cardiopulmonary bypass in piglets. Ann Thorac Surg 77:1656–1663PubMedCrossRefGoogle Scholar
  84. 84.
    Bronicki RA, Backer CL, Baden HP et al (2000) Dexamethasone reduces the inflammatory response to cardiopulmonary bypass in children. Ann Thorac Surg 69:1490–1495PubMedCrossRefGoogle Scholar
  85. 85.
    Lodge AJ, Chai PJ, Daggett CW et al (1999) Methylprednisolone reduces the inflammatory response to cardiopulmonary bypass in neonatal piglets: timing of dose is important. J Thorac Cardiovasc Surg 117:515–522PubMedCrossRefGoogle Scholar
  86. 86.
    Checchia PA, Bronicki RA, Costello JM et al (2005) Steroid use before pediatric cardiac operations using cardiopulmonary bypass: an international survey of 36 centers. Pediatr Crit Care Med 6:441–444PubMedCrossRefGoogle Scholar
  87. 87.
    Hill GE, Alonso A, Thiele G et al (1994) Glucocorticoids blunt neutrophil CD11b surface glycoprotein upregulation during cardiopulmonary bypass in humans. Anesth Analg 179:23–27Google Scholar
  88. 88.
    Cronstein BN, Kimmel SC, Levin RI et al (1992) A mechanism for the antiinflammatory effects of corticosteroids: the glucocorticoid receptor regulates leukocyte adhesion to endothelial cells and expression of endothelial-leukocyte adhesion molecule 1 and intercellular adhesion molecule 1. Proc Natl Acad Sci USA 89:9991–9995PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Abdul-Khaliq H, Schubert S, Stoltenburg-Didinger G (2000) Neuroprotective effects of pre-treatment with systemic steroids in a neonatal piglet model of cardiopulmonary bypass with deep hypothermic circulatory arrest. Eur J Cardiothorac Surg 18:729–731PubMedCrossRefGoogle Scholar
  90. 90.
    Schubert S, Stoltenburg-Didinger G, Wehsack A et al (2005) Large-dose pretreatment with methylprednisolone fails to attenuate neuronal injury after deep hypothermic circulatory arrest in a neonatal piglet model. Anesth Analg 101:1311–1318PubMedCrossRefGoogle Scholar
  91. 91.
    Checchia PA, Bronicki RA, Costello JM (2005) Steroid use before pediatric cardiac operations using cardiopulmonary bypass: an international survey of 36 centers. Pediatr Crit Care Med 6:441–444PubMedCrossRefGoogle Scholar
  92. 92.
    Graham EM, Atz AM, Butts RJ et al (2011) Standardized preoperative corticosteroid treatment in neonates undergoing cardiac surgery: results from a randomized trial. J Thorac Cardiovasc Surg 142:1523–1529PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Clarizia NA, Manlhiot C, Schwartz SM et al (2011) Improved outcomes associated with intraoperative steroid use in high-risk pediatric cardiac surgery. Ann Thorac Surg 91:1222–1227PubMedCrossRefGoogle Scholar
  94. 94.
    Jaquiss RD, Ghanayem NS, Zacharisen MC et al (2002) Safety of aprotinin use and re-use in pediatric cardiothoracic surgery. Circulation 106:I90–I94PubMedGoogle Scholar
  95. 95.
    Costello JM, Backer CL, de Hoyos A et al (2003) Aprotinin reduces operative closure time and blood product use after pediatric bypass. Ann Thorac Surg 75:1261–1266PubMedCrossRefGoogle Scholar
  96. 96.
    Mojcik CF, Levy JH (2001) Aprotinin and the systemic inflammatory response after cardiopulmonary bypass. Ann Thorac Surg 71:745–754PubMedCrossRefGoogle Scholar
  97. 97.
    Aoki M, Jonas RA, Nomura F et al (1994) Effects of aprotinin on acute recovery of cerebral metabolism in piglets after hypothermic circulatory arrest. Ann Thorac Surg 58:146–153PubMedCrossRefGoogle Scholar
  98. 98.
    Anttila V, Hagino I, Iwata Y et al (2006) Aprotinin improves cerebral protection: evidence from a survival porcine model. J Thorac Cardiovasc Surg 132:948–953PubMedCrossRefGoogle Scholar
  99. 99.
    Schneeweiss S, Seeger JD, Landon J et al (2008) Aprotinin during coronary artery bypass grafting and risk of death. N Engl J Med 358:771–783PubMedCrossRefGoogle Scholar
  100. 100.
    Shaw AD, Stafford-Smith M, White WD et al (2008) The effect of aprotinin on outcome after coronary-artery bypass grafting. N Engl J Med 358:784–793PubMedCrossRefGoogle Scholar
  101. 101.
    Pasquali SK, Hall M, Li JS et al (2010) Safety of aprotinin in congenital heart operations: results from a large multicenter database. Ann Thorac Surg 90:14–21PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Williams GD, Ramamoorthy C, Pentcheva K et al (2008) A randomized, controlled trial of aprotinin in neonates undergoing open-heart surgery. Paediatr Anaesth 18:812–819PubMedCrossRefGoogle Scholar
  103. 103.
    Backer CL, Kelle AM, Stewart RD et al (2007) Aprotinin is safe in pediatric patients undergoing cardiac surgery. J Thorac Cardiovasc Surg 134:1421–1428PubMedCrossRefGoogle Scholar
  104. 104.
    Fergusson DA, Hebert PC, Mazer CD et al (2008) A comparison of aprotinin and lysine analogues in high-risk cardiac surgery. N Engl J Med 358:2319–2331PubMedCrossRefGoogle Scholar
  105. 105.
    Asimakopoulos G (2002) The inflammatory response to CPB: the role of leukocyte filtration. Perfusion 17:7–10PubMedCrossRefGoogle Scholar
  106. 106.
    Ohto T, Yamamoto F, Nakajima N (2000) Evaluation of leukocyte-reducing arterial line filter (LR6) for post-operative lung function, using cardiopulmonary bypass. Jpn J Thorac Cardiovasc Surg 48:295–300PubMedCrossRefGoogle Scholar
  107. 107.
    Mair P, Hoermami C, Mair J et al (1999) Effects of a leucocyte depleting arterial line filter on perioperative proteolytic enzyme and oxygen free radical release in patients undergoing aortocoronary bypass surgery. Acta Anaesthesiol Scand 43:452–457PubMedCrossRefGoogle Scholar
  108. 108.
    Eppinger M, Jones M, Deeb G (1995) Pattern of injury and the role of neutrophils in reperfusion injury of rat lung. J Surg Res 58:713–718PubMedCrossRefGoogle Scholar
  109. 109.
    Naik S, Knight A, Elliott MJ (1991) A prospective randomized study of a modified technique of ultrafiltration during pediatric open-heart surgery. Circulation 84(Suppl 5):III422–III431PubMedGoogle Scholar
  110. 110.
    Daggert C, Lodge A, Scarborough J (1988) Modified ultrafiltration: a randomized prospective study in neonatal pigs. J Thorac Cardiovasc Surg 115:336–340CrossRefGoogle Scholar
  111. 111.
    Skaryak LA, Kirshbom PM, DiBernardo LR et al (1995) Modified ultrafiltration improves cerebral metabolic recovery after circulatory arrest. J Thorac Cardiovasc Surg 109:744–752PubMedCrossRefGoogle Scholar
  112. 112.
    Weber CF, Jámbor C, Strasser C et al (2011) Normovolemic modified ultrafiltration is associated with better preserved platelet function and less postoperative blood loss in patients undergoing complex cardiac surgery: a randomized and controlled study. J Thorac Cardiovasc Surg 141:1298–1304PubMedCrossRefGoogle Scholar
  113. 113.
    Boodhwani M, Hamilton A, de Varennes B et al (2010) A multicenter randomized controlled trial to assess the feasibility of testing modified ultrafiltration as a blood conservation technology in cardiac surgery. J Thorac Cardiovasc Surg 139:701–706PubMedCrossRefGoogle Scholar
  114. 114.
    Wan S, LeClerc J, Vincent JL (1997) Cytokine response to cardiopulmonary bypass: lessons learned from cardiac transplantation. Ann Thorac Surg 63:269–276PubMedCrossRefGoogle Scholar
  115. 115.
    Journois D, Israel-Biet D, Pouard P (1996) High-volume, zero-balanced hemofiltration to reduce delayed inflammatory response to cardiopulmonary bypass in children. Anesthesiology 85:965–976PubMedCrossRefGoogle Scholar
  116. 116.
    Gottlieb EA, Fraser CD Jr, Andropoulos DB et al (2006) Bilateral monitoring of cerebral oxygen saturation results in recognition of aortic cannula malposition during pediatric congenital heart surgery. Paediatr Anaesth 16:787–789PubMedCrossRefGoogle Scholar
  117. 117.
    Hill SJ, Withington DE (2006) Too clever by half? Can bilateral or unilateral NIRS monitoring improve neurological outcome from pediatric cardiopulmonary bypass? Paediatr Anaesth 16:709–711PubMedCrossRefGoogle Scholar
  118. 118.
    Andropoulos DB, Diaz LK, Fraser CD Jr (2004) Is bilateral monitoring of cerebral oxygen saturation necessary during neonatal aortic arch reconstruction? Anesth Analg 98:1267–1272PubMedCrossRefGoogle Scholar
  119. 119.
    Bar-Yosef S, Sanders EG, Grocott HP (2003) Asymmetric cerebral near-infrared oximetric measurements during cardiac surgery. J Cardiothorac Vasc Anesth 17:773–774PubMedCrossRefGoogle Scholar
  120. 120.
    Kurth CD, Steven JM, Nicolson SC (1995) Cerebral oxygenation during pediatric cardiac surgery using deep hypothermic circulatory arrest. Anesthesiology 82:74–82PubMedCrossRefGoogle Scholar
  121. 121.
    Austin EH III, Edmonds HL Jr, Auden SM et al (1997) Benefit of neurophysiologic monitoring for pediatric cardiac surgery. J Thorac Cardiovasc Surg 114:707–716PubMedCrossRefGoogle Scholar
  122. 122.
    Phelps HM, Mahle WT, Kim D et al (2009) Postoperative cerebral oxygenation in hypoplastic left heart syndrome after the Norwood procedure. Ann Thorac Surg 87:1490–1494PubMedCrossRefGoogle Scholar
  123. 123.
    Johnson BA, Hoffman GM, Tweddell JS et al (2009) Near-infrared spectroscopy in neonates before palliation of hypoplastic left heart syndrome. Ann Thorac Surg 87:571–579PubMedCrossRefGoogle Scholar
  124. 124.
    Tweddell JS, Ghanayem NS, Hoffman GM (2010) Pro: NIRS is “standard of care” for postoperative management. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 13:44–50PubMedCrossRefGoogle Scholar
  125. 125.
    Hirsch JC, Charpie JR, Ohye RG et al (2010) Near infrared spectroscopy (NIRS) should not be standard of care for postoperative management. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 13:51–54PubMedCrossRefGoogle Scholar
  126. 126.
    Cariou A, Monchi M, Dhainaut JF (1998) Continuous cardiac output and mixed venous oxygen saturation monitoring. J Crit Care 13:198–213PubMedCrossRefGoogle Scholar
  127. 127.
    Tweddell JS, Hoffman GM, Mussatto KA et al (2002) Improved survival of patients undergoing palliation of hypoplastic left heart syndrome: lessons learned from 115 consecutive patients. Circulation 106:I82–I89PubMedGoogle Scholar
  128. 128.
    Tweddell JS, Ghanayem NS, Mussatto KA et al (2007) Mixed venous oxygen saturation monitoring after stage 1 palliation for hypoplastic left heart syndrome. Ann Thorac Surg 84:1301–1311PubMedCrossRefGoogle Scholar
  129. 129.
    Ranucci M, Isgrò G, De La Torre T et al (2008) Continuous monitoring of central venous oxygen saturation (Pediasat) in pediatric patients undergoing cardiac surgery: a validation study of a new technology. J Cardiothorac Vasc Anesth 22:847–852PubMedCrossRefGoogle Scholar
  130. 130.
    Liakopoulos OJ, Ho JK, Yezbick A et al (2007) An experimental and clinical evaluation of a novel central venous catheter with integrated oximetry for pediatric patients undergoing cardiac surgery. Anesth Analg 105:1598–1604PubMedCrossRefGoogle Scholar
  131. 131.
    Kissoon N, Spenceley N, Krahn G et al (2010) Continuous central venous oxygen saturation monitoring under varying physiological conditions in an animal model. Anaesth Intensive Care 38:883–889PubMedGoogle Scholar
  132. 132.
    Baulig W, Spielmann N, Zaiter H et al (2010) In-vitro evaluation of the PediaSat continuous central venous oxygenation monitoring system. Eur J Anaesthesiol 27:289–294PubMedCrossRefGoogle Scholar
  133. 133.
    Marimón GA, Dockery WK, Sheridan MJ et al (2011) Near-infrared spectroscopy cerebral and somatic (renal) oxygen saturation correlation to continuous venous oxygen saturation via intravenous oximetry catheter. J Crit Care 2011 Dec 13. [Epub ahead of print]Google Scholar
  134. 134.
    Hoffman GM, Ghanayem NS, Kampine JM et al (2000) Venous saturation and the anaerobic threshold in neonates after the Norwood procedure for hypoplastic left heart syndrome. Ann Thorac Surg 70:1515–1521PubMedCrossRefGoogle Scholar
  135. 135.
    Crowley R, Sanchez E, Ho JK et al (2011) Prolonged central venous desaturation measured by continuous oximetry is associated with adverse outcomes in pediatric cardiac surgery. Anesthesiology 115:1033–1043PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.Pediatric Cardiothoracic SurgeryWake Forest Baptist Health/Brenner Children’s HospitalWinston-SalemUSA
  2. 2.Pediatric Cardiac SurgeryWake Forest UniversityWinston-SalemUSA

Personalised recommendations