Advertisement

Simple Transposition of the Great Arteries

  • Shriprasad Deshpande
  • Michael J. Wolf
  • Dennis W. Kim
  • Paul M. Kirshbom
Reference work entry

Abstract

Transposition of the great arteries (TGA) is one of the more common cyanotic congenital heart defects with an incidence of about 300 per million live births. In TGA, the ventriculo-arterial connection is reversed such that the majority of the aorta arises from the right ventricle while the majority of the pulmonary artery arises from the left ventricle. This defect is incompatible with long-term survival without surgical correction. Since the arterial switch procedure was introduced in the 1970s, early anatomic and physiologic repair has become the standard of care for these children with an expectation of excellent long-term outcomes for the majority.

Keywords

Ventricular Septal Defect Right Ventricular Outflow Tract Arterial Switch Operation Branch Pulmonary Artery Intact Ventricular Septum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

164925_1_En_45_MOESM1_ESM.avi (16.6 mb)
Video 109.1 AVI file: 17033 kb
164925_1_En_45_MOESM2_ESM.avi (15.9 mb)
Video 109.2 AVI file: 16274 kb
164925_1_En_45_MOESM3_ESM.avi (1.3 mb)
Video 109.3 AVI file: 1382 kb
164925_1_En_45_MOESM4_ESM.avi (2.4 mb)
Video 109.4 AVI file: 2502 kb
164925_1_En_45_MOESM5_ESM.avi (6.4 mb)
Video 109.5 AVI file: 6507 kb
164925_1_En_45_MOESM6_ESM.avi (10.1 mb)
Video 109.6 AVI file: 10346 kb
164925_1_En_45_MOESM7_ESM.avi (23.5 mb)
Video 109.7 AVI file: 24071 kb
164925_1_En_45_MOESM8_ESM.avi (3.3 mb)
Video 109.8 AVI file: 3385 kb
164925_1_En_45_MOESM9_ESM.avi (3 mb)
Video 109.9 AVI file: 3075 kb
164925_1_En_45_MOESM10_ESM.avi (4.9 mb)
Surgery Clip 109.1 AVI file: 4983 kb
164925_1_En_45_MOESM11_ESM.avi (9.8 mb)
Surgery Clip 109.2 AVI file: 10017 kb
164925_1_En_45_MOESM12_ESM.avi (17.9 mb)
Surgery Clip 109.3 AVI file: 18336 kb
164925_1_En_45_MOESM13_ESM.avi (37.3 mb)
Surgery Clip 109.4 AVI file: 38150 kb
164925_1_En_45_MOESM14_ESM.avi (7.2 mb)
Surgery Clip 109.5 AVI file: 7376 kb

References

  1. 1.
    Baillie M (1797) The morbid anatomy of some of the most important parts of the human body. Johnson and Nicol, London, pp 38–40Google Scholar
  2. 2.
    Farre J (1814) On malformations of the human heart. Longman, LondonGoogle Scholar
  3. 3.
    Peacock T (1866) On malformations of the human heart, etc.: with original cases and illustrations. John Churchill and Sons, LondonGoogle Scholar
  4. 4.
    Keith A (1909) The Hunterian lectures on malformation of the human heart. Lancet 174(4485):433–436CrossRefGoogle Scholar
  5. 5.
    Hoffman J, Kaplan S (2002) The incidence of congenital heart disease. J Am Coll Cardiol 39:1890–1900CrossRefPubMedGoogle Scholar
  6. 6.
    Abu-Sulaiman R, Subaih B (2004) Congenital heart disease in infants of diabetic mothers: echocardiographic study. Pediatr Cardiol 25:137–140CrossRefPubMedGoogle Scholar
  7. 7.
    Jenkins K, Correa A et al (2007) Noninherited risk factors and congenital cardiovascular defects: current knowledge: a scientific statement from the American Academy of Pediatrics. Circulation 115:2995–3014CrossRefPubMedGoogle Scholar
  8. 8.
    Snijder C, Vlot I et al (2012) Congenital heart defects and parental occupational exposure to chemicals. Hum Reprod 27(5):1510–1517CrossRefPubMedGoogle Scholar
  9. 9.
    Loffredo C, Silbergeld E et al (2001) Association of transposition of the great arteries in infants with maternal exposures to herbicides and rodenticides. Am J Epidemiol 153:529–536CrossRefPubMedGoogle Scholar
  10. 10.
    Muncke N, Jung C et al (2003) Missense mutations and gene interruption in PROSIT240, a novel TRAP240-like gene, in patients with congenital heart disease (transposition of the great arteries). Circulation 108:2843–2850CrossRefPubMedGoogle Scholar
  11. 11.
    Karkera J, Lee J et al (2007) Loss of function mutations in growth differentiation factor-1 (GDF-1) are associated with congenital heart defects in humans. Am J Hum Genet 81:987–994CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Goldmuntz E, Bamford R et al (2002) CFC1 mutations in patients with transposition of the great arteries and double-outlet right ventricle. Am J Hum Genet 70:776–780CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Amati F, Diano L et al (2010) Hif1α downregulation is associated with transposition of the great arteries in mice treated with a retinoic acid antagonist. BMC Genomics 11:497CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Huang J, Liu Y et al (2010) Molecular mechanisms of congenital heart disease. Cardiovasc Pathol 19(5):e183–e193CrossRefPubMedGoogle Scholar
  15. 15.
    Liebman J, Cullum L et al (1969) Natural history of transposition of the great arteries. Anatomy and birth and death characteristics. Circulation 40:237–262CrossRefPubMedGoogle Scholar
  16. 16.
    Jaggers J, Carmeron D et al (2000) Congenital heart surgery nomenclature and database project: transposition of the great arteries. Ann Thorac Surg 69:S205–S235CrossRefPubMedGoogle Scholar
  17. 17.
    Van Praagh R (1984) Diagnosis of complex congenital heart disease: morphologic-anatomic method and terminology. Cardiovasc Intervent Radiol 7(3–4):115–120CrossRefPubMedGoogle Scholar
  18. 18.
    Bartram U, Wirbelauer J et al (2005) Heterotaxy syndrome-asplenia and polysplenia as indicators of visceral malposition and complex congenital heart disease. Biol Neonate 88:278–290CrossRefPubMedGoogle Scholar
  19. 19.
    Sim E, van Son J et al (1994) Coronary artery anatomy in complete transposition of the great arteries. Ann Thorac Surg 57:890–894CrossRefPubMedGoogle Scholar
  20. 20.
    Li J, Tulloh R et al (2000) Coronary arterial origins in transposition of the great arteries: a morphologic study. Heart 83:320–325CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Gittenberger-de Groot A, Sauer U et al (1983) Coronary arterial anatomy in transposition of the great arteries: a morphologic study. Pediatr Cardiol (Suppl 1):15–24Google Scholar
  22. 22.
    Newfeld E, Paul M et al (1974) Pulmonary vascular disease in complete transposition of the great arteries: a study of 200 patients. Am J Cardiol 34(1):75–82CrossRefPubMedGoogle Scholar
  23. 23.
    Kumar A, Taylor G et al (1993) Pulmonary vascular disease in neonates with transposition of the great arteries and intact ventricular septum. Br Heart J 69:442–445CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Rivenes S, Grifka R et al (1998) Development of advanced pulmonary vascular disease in D-transposition of the great arteries after neonatal arterial switch operation. Tex Heart Inst J 25(3):201–205PubMedPubMedCentralGoogle Scholar
  25. 25.
    Huhta J (2005) Evaluating the fetus with transposition. Cardiol Young 15(Suppl 1):88–92CrossRefPubMedGoogle Scholar
  26. 26.
    Rasiah S, Publicover M et al (2006) A systematic review of the accuracy of first-trimester ultrasound examination for detecting major congenital heart disease. Ultrasound Obstet Gynecol 28(1):110–116CrossRefPubMedGoogle Scholar
  27. 27.
    Calderon J, Angeard N et al (2012) Outcomes in children with transposition of the great arteries. J PediatrGoogle Scholar
  28. 28.
    de Wahl Granelli A, Wennergren M et al (2009) Impact of pulse oximetry screening on the detection of duct dependent congenital heart disease: a Swedish prospective screening study in 39,821 newborns. BMJ 338:a3037CrossRefGoogle Scholar
  29. 29.
    Maeno Y, Kamenir S et al (1999) Prenatal features of ductus arteriosus constriction and restrictive foramen ovale in d-transposition of the great arteries. Circulation 99(9):1209–1214CrossRefPubMedGoogle Scholar
  30. 30.
    Roofthooft M, Bergman K et al (2007) Persistent pulmonary hypertension of the newborn with transposition of the great arteries. Ann Thorac Surg 83:1446–1450CrossRefPubMedGoogle Scholar
  31. 31.
    Rashkind W, Miller W (1966) Creation of an atrial septal defect without thoracotomy. A palliative approach to complete transposition of the great arteries. J Am Coll Cardiol 196:991–992Google Scholar
  32. 32.
    McQuillen P, Hamrick S et al (2006) Balloon atrial septostomy is associated with preoperative stroke in neonates with transposition of the great arteries. Circulation 113(2):280–285CrossRefPubMedGoogle Scholar
  33. 33.
    Petit C, Rome J et al (2009) Preoperative brain injury in transposition of the great arteries is associated with oxygenation and time of surgery, not balloon atrial septostomy. Circulation 119(5):709–716CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Applegate D, Lim D (2010) Incidence of stroke in patients with d-transposition of the great arteries that undergo balloon atrial septostomy in the University Health System Consortium Clinical Database/Resource Manager. Catheter Cardiovasc Interv 76(1):129–131CrossRefPubMedGoogle Scholar
  35. 35.
    Muckerjee D, Lindsay M et al (2010) Analysis of 8681 neonates with transposition of the great arteries: outcomes with and without Rashkind balloon atrial septostomy. Cardiol Young 20(4):373–380CrossRefGoogle Scholar
  36. 36.
    Senning A (1959) Surgical correction of transposition of the great vessels. Surgery 45:966–979PubMedGoogle Scholar
  37. 37.
    Mustard W (1964) Successful two-stage correction of transposition of the great vessels. Surgery 55:469–472PubMedGoogle Scholar
  38. 38.
    Jatene A, Fontes V et al (1976) Anatomic correction of transposition of the great vessels. J Thorac Cardiovasc Surg 72:364–370PubMedGoogle Scholar
  39. 39.
    LeCompte Y, Zannini L et al (1981) Anatomic correction of transposition of the great arteries. J Thorac Cardiovasc Surg 82:629–631PubMedGoogle Scholar
  40. 40.
    el-Said G, Rosenberg H et al (1972) Dysrhythmias after mustard’s operation for transposition of the great arteries. Am J Cardiol 30:526–532CrossRefPubMedGoogle Scholar
  41. 41.
    Kramer H, Rammos S et al (1991) Cardiac rhythm after mustard repair and after arterial switch operation for complete transposition. Int J Cardiol 32:5–12CrossRefPubMedGoogle Scholar
  42. 42.
    Martin R, Qureshi S et al (1990) An evaluation of right and left ventricular function after anatomical correction and intra-atrial repair operations for complete transposition of the great arteries. Circulation 82:808–816CrossRefPubMedGoogle Scholar
  43. 43.
    Backer C, Ilbawi M et al (1989) Transposition of the great arteries: a comparison of results of the mustard procedure versus the arterial switch. Ann Thorac Surg 48:10–14CrossRefPubMedGoogle Scholar
  44. 44.
    Haas F, Wottke M et al (1999) Long-term survival and functional follow-up in patients after arterial switch operation. Ann Thorac Surg 68:1692–1697CrossRefPubMedGoogle Scholar
  45. 45.
    Lupinetti F, Bove E et al (1992) Intermediate-term survival and functional results after arterial repair for transposition of the great arteries. J Thorac Cardiovasc Surg 103:421–427PubMedGoogle Scholar
  46. 46.
    Davis A, Wilkinson J et al (1993) Transposition of the great arteries with intact ventricular septum: arterial switch repair in patients 21 days of age and older. J Thorac Cardiovasc Surg 106:111–115PubMedGoogle Scholar
  47. 47.
    Rudra H, Mavroudis C et al (2011) The arterial switch operation: 25-year experience with 258 patients. Ann Thorac Surg 92(5):1742–1746CrossRefPubMedGoogle Scholar
  48. 48.
    Adhyapak S, Mahala B et al (2007) Impact of left ventricular function on early outcomes after arterial switch for D-transposition of the great arteries with intact ventricular septum. Indian Heart J 59(2):137–141PubMedGoogle Scholar
  49. 49.
    Stoica S, Clarke D et al (2009) Morbidity factors in the arterial switch operation. Cardiol Young 19:148–149Google Scholar
  50. 50.
    Seear M, Scarfe J et al (2008) Predicting major adverse events after cardiac surgery in children. Pediatr Crit Care Med 9(6):606–611CrossRefPubMedGoogle Scholar
  51. 51.
    Bhutta A, Ford J et al (2007) Noninvasive cerebral oximeter as a surrogate for mixed venous saturation in children. Pediatr Cardiol 28(1):34–41CrossRefPubMedGoogle Scholar
  52. 52.
    Mittnacht A (2010) Near infrared spectroscopy in children at high risk of low perfusion. Curr Opin Anaesthesiol 23(3):342–347CrossRefPubMedGoogle Scholar
  53. 53.
    Gaynor J (2003) The effect of modified ultrafiltration on postoperative course in patients with congenital heart disease. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 6:128–139CrossRefPubMedGoogle Scholar
  54. 54.
    Falcao G, Ulate K et al (2008) Impact of postoperative hyperglycemia following surgical repair of congenital cardiac defects. Pediatr Cardiol 29(3):628–636CrossRefPubMedGoogle Scholar
  55. 55.
    Dibardino D, Allison A et al (2004) Current expectations for newborns undergoing the arterial switch operation. Ann Surg 239(5):588–598CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Hirsch J, Gurney J et al (2008) Hospital mortality for Norwood and arterial switch operations as a function of institutional volume. Pediatr Cardiol 29(4):713–717CrossRefPubMedGoogle Scholar
  57. 57.
    Lalezari S, Bruggemans E et al (2011) Thirty-year experience with the arterial switch operation. Ann Thorac Surg 92(3):973–979CrossRefPubMedGoogle Scholar
  58. 58.
    Wong S, Finucane K et al (2008) Cardiac outcome up to 15 years after the arterial switch operation. Heart Lung Circ 17(1):48–53CrossRefPubMedGoogle Scholar
  59. 59.
    Qamar Z, Goldberg C et al (2007) Current risk factors and outcomes for the arterial switch operation. Ann Thorac Surg 84(3):871–878CrossRefPubMedGoogle Scholar
  60. 60.
    Massin M (1999) Midterm results of the neonatal arterial switch operation. A review. J Cardiovasc Surg 40(4):517–522Google Scholar
  61. 61.
    Losay J, Touchot A et al (2001) Late outcome after arterial switch operation for transposition of the great arteries. Circulation 104(12 (Suppl 1)):I121–I126CrossRefPubMedGoogle Scholar
  62. 62.
    Prifti E, Crucean A et al (2002) Early and long term outcome of the arterial switch operation for transposition of the great arteries: predictors and functional evaluation. Eur J Cardiothorac Surg 22(6):864–873CrossRefPubMedGoogle Scholar
  63. 63.
    Choi B, Kwon B et al (2010) Long-term outcomes after an arterial switch operation for simple complete transposition of the great arteries. Korean Circ J 40(1):23–30CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Gorler H, Ono M et al (2011) Long-term morbidity and quality of life after surgical repair of transposition of the great arteries: atrial versus arterial switch operation. Interact Cardiovasc Thorac Surg 12(4):569–574CrossRefPubMedGoogle Scholar
  65. 65.
    Bonnet D, Bonhoeffer P et al (1996) Long-term fate of the coronary arteries after the arterial switch operation in newborns with transposition of the great arteries. Heart 76(3):274–279CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Manso B, Castellote A et al (2010) Myocardial perfusion magnetic resonance imaging for detecting coronary function anomalies in asymptomatic paediatric patients with a previous arterial switch operation for transposition of the great arteries. Cardiol Young 20(4):410–417CrossRefPubMedGoogle Scholar
  67. 67.
    Legendre A, Losay J, Losay J, Losay J et al (2003) Coronary events after arterial switch operation for transposition of the great arteries. Circulation 108(Suppl 33):II186–II190PubMedGoogle Scholar
  68. 68.
    El-Segaier M, Lundin A et al (2010) Late coronary complications after arterial switch operation and their treatment. Catheter Cardiovasc Interv 76(7):1027–1032CrossRefPubMedGoogle Scholar
  69. 69.
    Mavroudis C, Stewart R et al (2011) Reoperative techniques for complications after arterial switch. Ann Thorac Surg 92(5):1747–1754CrossRefPubMedGoogle Scholar
  70. 70.
    Lange R, Cleuziou J et al (2008) Risk factors for aortic insufficiency and aortic valve replacement after the arterial switch operation. Eur J Cardiothorac Surg 34(4):711–717CrossRefPubMedGoogle Scholar
  71. 71.
    McMahon C, Ravekes W et al (2004) Risk factors for neo-aortic root enlargement and aortic regurgitation following arterial switch operation. Pediatr Cardiol 25(4):329–335CrossRefPubMedGoogle Scholar
  72. 72.
    Tang G, Borger M (2005) Aortic root replacement surgery: indications, techniques, and outcomes. Expert Rev Cardiovasc Ther 3(5):845–856CrossRefPubMedGoogle Scholar
  73. 73.
    McElhinney D, Reddy V et al (2000) Impaired distensibility of neoaorta after arterial switch procedure. Ann Thorac Surg 65(1):246–248CrossRefGoogle Scholar
  74. 74.
    Moll J, Michalak K et al (2012) Long-term outcome of direct neopulmonary artery reconstruction during the arterial switch procedure. Ann Thorac Surg 93(1):177–184CrossRefPubMedGoogle Scholar
  75. 75.
    Wernovsky G, Mayer J Jr et al (1995) Factors influencing early and late outcome of the arterial switch operation for transposition of the great arteries. J Thorac Cardiovasc Surg 109(2):282–289CrossRefGoogle Scholar
  76. 76.
    Prapa M, Dimopoulos K (2012) Arterial switch repair to transposition of the great arteries: so far so good. Int J Cardiol 160(1):1–3CrossRefPubMedGoogle Scholar
  77. 77.
    De Koning W, Van Osch-Gevers M et al (2008) Follow-up outcomes 10 years after arterial switch operation for transposition of the great arteries: comparison of cardiological health status and health-related quality of life to those of the normal reference population. Eur J Pediatr 167(9):995–1004CrossRefPubMedGoogle Scholar
  78. 78.
    Tobler D, Williams W et al (2010) Cardiac outcomes in young adult survivors of the arterial switch operation for transposition of the great arteries. J Am Coll Cardiol 56(1):58–64CrossRefPubMedGoogle Scholar
  79. 79.
    Newburger J, Jonas R et al (1993) A comparison of the perioperative neurologic effects of hypothermic circulatory arrest versus low-flow cardiopulmonary bypass in infant heart surgery. N Engl J Med 329(15):1057–1064CrossRefPubMedGoogle Scholar
  80. 80.
    Bellinger D, Wypij D et al (2003) Neurodevelopmental status at eight years in children with dextro-transposition of the great arteries: the Boston circulatory arrest trial. J Thorac Cardiovasc Surg 126(5):1385–1396CrossRefPubMedGoogle Scholar
  81. 81.
    Bellinger D, Newburger J et al (2009) Behaviour at eight years in children with surgically corrected transposition: the Boston circulatory arrest trial. Cardiol Young 19(1):86–97CrossRefPubMedGoogle Scholar
  82. 82.
    Wypij D, Newburger J et al (2003) The effect of duration of deep hypothermic circulatory arrest in infant heart surgery on late neurodevelopment: the Boston circulatory arrest trial. J Thorac Cardiovasc Surg 126(5):1397–1403CrossRefPubMedGoogle Scholar
  83. 83.
    Bellinger D, Wypij D et al (2011) Adolescents with d-transposition of the great arteries corrected with the arterial switch procedure: neuropsychological assessment and structural brain imaging. Circulation 124(12):1361–1369CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Mahle W (2011) Boston circulatory arrest study at 16 years: handing over the keys. Circulation 124(12):1319–1320CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Shriprasad Deshpande
    • 1
  • Michael J. Wolf
    • 1
  • Dennis W. Kim
    • 1
  • Paul M. Kirshbom
    • 2
  1. 1.Department of PediatricsEmory University School of MedicineAtlantaUSA
  2. 2.Department of SurgeryYale School of Medicine and Connecticut Children’s Medical CenterNew HavenUSA

Personalised recommendations