Skip to main content

Major Histocompatibility Complex (MHC), Binder Prediction

  • Reference work entry
Encyclopedia of Systems Biology

Synonyms

Peptide-MHC binding affinity prediction; Peptide-MHC binding prediction

Definition

Major histocompatibility complex (MHC) binders are short linear fragments of proteins that bind to MHC molecules for inspection by T-cell receptors (TCRs). T-cells recognize non-self antigens as peptide fragments bounded to MHC molecules and presented in the surface of the cell. MHC molecules are membrane proteins whose outer extracellular domains form a cleft in which a peptide fragment is bound. There are two major types of MHC molecules: (1) MHC class I (MHC-I) molecules that bind intracellular short peptides, derived from the degradation of ubiquitinated cytosolic proteins in proteasomes, and present them to the cell surface for recognition by T-cells with CD8 receptors; (2) MHC class II (MHC-II) molecules that bind extracellular peptides and present them to the cell surface for recognition by T-cells with CD4 receptors.

A major difference between MHC-I and MHC-II binders has to do with the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bui H, Sidney J, Peters B, Sathiamurthy M, Sinichi A, Purton K, Mothé B, Chisari F, Watkins D, Sette A (2005) Automated generation and evaluation of specific MHC binding predictive tools: ARB matrix applications. Immunogenetics 57:304–314

    Article  CAS  PubMed  Google Scholar 

  • Buus S, Lauemoller S, Worning P, Kesmir C, Frimurer T, Corbet S, Fomsgaard A, Hilden J, Holm A, Brunak S (2003) Sensitive quantitative predictions of peptide-MHC binding by a 'query by committee' artificial neural network approach. Tissue Antigens 62:378–384

    Article  CAS  PubMed  Google Scholar 

  • Donnes P, Kohlbacher O (2006) SVMHC: a server for prediction of MHC-binding peptides. Nucleic Acids Res 34:W194

    Article  PubMed  CAS  Google Scholar 

  • Doytchinova I, Guan P, Flower D (2004) Identifiying human MHC supertypes using bioinformatic methods. J Immunol 172:4314–4323

    CAS  PubMed  Google Scholar 

  • El-Manzalawy Y, Dobbs D, Honavar V (2011) Predicting MHC-II binding affinity using multiple instance regression. IEEE/ACM Trans Comput Biol Bioinform 8:1067–1079

    Article  CAS  PubMed  Google Scholar 

  • Hammer J, Bono E, Gallazzi F, Belunis C, Nagy Z, Sinigaglia F (1994) Precise prediction of major histocompatibility complex class II-peptide interaction based on peptide side chain scanning. J Exp Med 180:2353–2358

    Article  CAS  PubMed  Google Scholar 

  • Korber B, LaBute M, Yusim K (2006) Immunoinformatics comes of age. PLoS Comput Biol 2:e71

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Meng X, Xu Q, Flower D, Li T (2006) Quantitative prediction of mouse class I MHC peptide binding affinity using support vector machine regression (SVR) models. BMC Bioinform 7:182

    Article  CAS  Google Scholar 

  • Madden D (1995) The three-dimensional structure of peptide-MHC complexes. Annu Rev Immunol 13:587–622

    Article  CAS  PubMed  Google Scholar 

  • Mitchell T (1997) Machine learning. McGraw Hill, New York

    Google Scholar 

  • Nielsen M, Lund O (2009) NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction. BMC Bioinform 10:296

    Article  CAS  Google Scholar 

  • Nielsen M, Lundegaard C, Lund O (2007) Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method. BMC Bioinform 8:238

    Article  CAS  Google Scholar 

  • Nielsen M, Lund O, Buus S, Lundegaard C (2010) MHC Class II epitope predictive algorithms. Immunology 130:319–328

    Article  CAS  PubMed  Google Scholar 

  • Pathak S, Palan U (2005) Immunology: essential and fundamental. Science Pub Inc, Enfield

    Google Scholar 

  • Reche P, Reinherz E (2007) Definition of MHC supertypes through clustering of MHC peptide-binding repertoires. Immunoinformatics: predicting immunogenicity in silico. Humana Pr Inc, Totowa, p 163

    Google Scholar 

  • Reche P, Glutting J, Zhang H, Reinherz E (2004) Enhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profiles. Immunogenetics 56:405–419

    Article  CAS  PubMed  Google Scholar 

  • Sette A, Sidney J (1998) HLA supertypes and supermotifs: a functional perspective on HLA polymorphism. Curr Opin Immunol 10:478–482

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasser EL-Manzalawy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this entry

Cite this entry

EL-Manzalawy, Y., Honavar, V. (2013). Major Histocompatibility Complex (MHC), Binder Prediction. In: Dubitzky, W., Wolkenhauer, O., Cho, KH., Yokota, H. (eds) Encyclopedia of Systems Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9863-7_97

Download citation

Publish with us

Policies and ethics