Encyclopedia of Systems Biology

2013 Edition
| Editors: Werner Dubitzky, Olaf Wolkenhauer, Kwang-Hyun Cho, Hiroki Yokota


  • Walter Schubert
Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-9863-7_631


Toponomics is a discipline in systems biology, molecular cell biology, and histology concerning the study of the toponome of organisms. The toponome is the spatial network code of proteins and other biomolecules in morphologically intact cells and tissues. The term “toponome” is derived from the ancient Greek nouns “topos” (τóπoς; place, position) and “nomos” (νóμoς; law), addressing the fact that the network of biomolecules in cells follows topological rules enabling coordinated actions (Schubert 2003). This spatial organization can be described by a three symbol code (Schubert 2003, 2007a; Schubert et al. 2006). The core technology decoding the toponome is the dimension-unlimited functional super-resolution microscopy TIS.


Cellular functionalities comprise at least four organizational levels: genome, transcriptome, proteome, and toponome. The toponome (Schubert 2003) is defined as the spatial network code of proteins and other biomolecules in morphologically...

This is a preview of subscription content, log in to check access.



Supported by the Klaus Tschira Foundation (KTS), the Deutsche Forschungsgemeinschaft (DFG Schu627/10-1), the BMBF (grants CELLECT, NBL3, NGFN2, and NGFNplus), the DFG-Innovationskolleg (INK15) and the EU project IMAGINT (Health-F5-2011-259881), as well as the human toponome project (www.huto.toposnomos.com). We thank ToposNomos Ltd. for providing access to the TISTM reference lab.


  1. Abott A (2006) Mapping togetherness (research highlight, referring to Schubert et al. 2006). Nature 443:609Google Scholar
  2. Ademmer K, Ebert M, Müller-Ostermeyer F, Friess H, Büchler MW, Schubert W, Malfertheiner P (1998) Effector T Iymphocyte subsets in human pancreatic cancer: detection of CD8 + CD18+ cells and CD8 + CD103+ cells by multi-epitope imaging. Am J Gastroenterol 11:2141–2147Google Scholar
  3. Alex P, Gucek M, Li X (2009) Applications of proteomics in the study of inflammatory bowel diseases: current status and future directions with available technologies. Inflamm Bowel Dis 15(4):616–629PubMedCrossRefGoogle Scholar
  4. Barclay AN, Brown MH, Law SKA, McKnight AJ, Tomlinson MG, van der Merwe PA (1995) The Leucocyte antigen factsbook, 1st edn. Academic, San DiegoGoogle Scholar
  5. Barysenka A, Dress AW, Schubert W (2010) An information theoretic thresholding method for detecting protein colocalizations in stacks of fluorescence images. J Biotechnol 149(3):127–131PubMedCrossRefGoogle Scholar
  6. Bedner E, Du L, Traganos F, Darzynkiewicz Z (2001) Caffeine dissociates complexes between DNA and intercalating dyes: application for bleaching fluorochrome-stained cells for their subsequent restaining and analysis by laser scanning cytometry. Cytometry 43(1):38PubMedCrossRefGoogle Scholar
  7. Berndt U, Philipsen L, Bartsch S, Hu Y, Röcken C, Bertram W, Hämmerle M, Rösch T, Sturm A (2010) Comparative Multi-Epitope-Ligand-Cartography reveals essential immunological alterations in Barrett’s metaplasia and esophageal adenocarcinoma. Mol Cancer 9:177PubMedCrossRefGoogle Scholar
  8. Bhattacharya S, Mathew G, Ruban E, Epstein DB, Krusche A, Hillert R, Schubert W, Khan M (2010) Toponome imaging system: in situ protein network mapping in normal and cancerous colon from the same patient reveals more than five-thousand cancer specific protein clusters and their subcellular annotation by using a three symbol code. J Proteome Res 9(12):6112–6125PubMedCrossRefGoogle Scholar
  9. Bode M, Irmler M, Friedenberger M, May C, Jung K, Stephan C, Meyer HE, Lach C, Hillert R, Krusche A, Beckers J, Marcus K, Schubert W (2008) Interlocking transcriptomics, proteomics and toponomics technologies for brain tissue analysis in murine hippocampus. Proteomics 8:1170–1178PubMedCrossRefGoogle Scholar
  10. Bonnekoh B, Malykh Y, Böckelmann R, Bartsch S, Pommer AJ, Gollnick H (2006) Profiling lymphocyte subpopulations in peripheral blood under efalizumab treatment of psoriasis by multi epitope ligand cartography (MELC) robot microscopy. Eur J Dermatol 16(6):623–635PubMedGoogle Scholar
  11. Bonnekoh B, Pommer AJ, Böckelmann R, Hofmeister H, Philipsen L, Gollnick H (2007a) Topo-proteomic in situ analysis of psoriatic plaque under efalizumab treatment. Skin Pharmacol Physiol 20(5):237–252PubMedCrossRefGoogle Scholar
  12. Bonnekoh B, Böckelmann R, Pommer AJ, Malykh Y, Philipsen L, Gollnick H (2007b) The CD11a binding site of efalizumab in psoriatic skin tissue as analyzed by Multi-Epitope Ligand Cartography robot technology. Introduction of a novel biological drug-binding biochip assay. Skin Pharmacol Physiol 20(2):96–111PubMedCrossRefGoogle Scholar
  13. Bonnekoh B, Pommer AJ, Böckelmann R, Philipsen L, Hofmeister H, Gollnick H (2008) In-situ-topoproteome analysis of cutaneous lymphomas: perspectives of assistance for dermatohistologic diagnostics by Multi Epitope Ligand Cartography (MELC). J Dtsch Dermatol Ges 6(12):1038–1051PubMedCrossRefGoogle Scholar
  14. Coste O, Brenneis C, Linke B, Pierre S, Maeurer C, Becker W, Schmidt H, Gao W, Geisslinger G, Scholich K (2008) Sphingosine 1-phosphate modulates spinal nociceptive processing. J Biol Chem 283(47):32442–32451PubMedCrossRefGoogle Scholar
  15. Cottingham K (2008a) Human toponome project. J Proteome Res 7:1806CrossRefGoogle Scholar
  16. Cottingham K (2008b) Location proteomics analysis of human protein atlas images. J Proteome Res 7:2188CrossRefGoogle Scholar
  17. De Angelis L, Berghella L, Coletta M, Lattanzi L, Zanchi M, Cusella-De Angelis MG, Ponzetto C, Cossu G (1999) Skeletal myogenic progenitors originating from embryonic dorsal aorta coexpress endothelial and myogenic markers and contribute to postnatal muscle growth and regeneration. J Cell Biol 147(4):869–878PubMedCrossRefGoogle Scholar
  18. Dress AWM, Lokot T, Pustyl’nikov LD, Schubert W (2004) Poisson numbers and poisson distributions in subset surprisology. Ann Comb 8(4):473–485CrossRefGoogle Scholar
  19. Dress A, Lokot T, Schubert W, Serocka P (2008) Two theorems about similarity maps. Ann Comb 12(3):279–290CrossRefGoogle Scholar
  20. Dübel S, Stoevesandt O, Taussig MJ, Hust M (2010) Generating recombinant antibodies to the complete human proteome. Trends Biotechnol 28(7):333–339PubMedCrossRefGoogle Scholar
  21. Ebert M, Müller-Ostermeyer F, Ademmer K, Friess H, Büchler MW, Schubert W, Malfertheiner P (1998) CD8 + CD103+ cells analogous to intestinal intraepithelial lymphocytes infiltrate the pancreas in chronic pancreatitis. Clin Exp Immunol 112:21–26PubMedCrossRefGoogle Scholar
  22. Ecker RC, Tarnok A (2005) Cytomics goes 3D: toward tissomics. Cytometry A 65(1):1–3PubMedGoogle Scholar
  23. Ecker RC, Rogojanu B, Streit M, Osterreicher K, Steiner GE (2006) An improved method for discrimination of cell populations in tissue sections using microscopy-based multicolcor tissue cytometry. Cytometry A 69(3):119–123PubMedGoogle Scholar
  24. Eyerich K, Böckelmann R, Pommer AJ, Foerster S, Hofmeister H, Huss-Marp J, Cavani A, Behrendt H, Ring J, Gollnick H, Bonnekoh B, Traidl-Hoffmann C (2010) Comparative in situ topoproteome analysis reveals differences in patch test-induced eczema: cytotoxicity-dominated nickel versus pleiotrope pollen reaction. Exp Dermatol 19(6):511–517PubMedCrossRefGoogle Scholar
  25. Friedenberger M, Bode M, Krusche A, Schubert W (2007) Fluorescence detection of protein clusters in individual cells and tissue sections by using toponome imaging system: sample preparation and measuring procedures. Nat Protoc 2(9):2285–2294PubMedCrossRefGoogle Scholar
  26. Garry EM, Moss A, Delaney A, O’Neill F, Blakemore J, Bowen J, Husi H, Mitchell R, Grant SG, Fleetwood-Walker SM (2003) Neuropathic sensitization of behavioral reflexes and spinal NMDA receptor/CaM kinase II interactions are disrupted in PSD-95 mutant mice. Curr Biol 13(4):321–328PubMedCrossRefGoogle Scholar
  27. Haars R, Schneider A, Bode M, Schubert W (2000) Secretion and differential localization of the proteolytic cleavage products A40 and A42 of the Alzheimer amyloid precursor protein in human fetal myogenic cells. Eur J Cell Biol 79:400–406PubMedCrossRefGoogle Scholar
  28. Herold J, Schubert W, Nattkemper TW (2010) Automated detection and quantification of fluorescently labeled synapses in murine brain tissue sections for high throughput applications. J Biotechnol 149(4):299–309PubMedCrossRefGoogle Scholar
  29. Hutchinson L, Kirk R (2011) High drug attrition rates – where are we going wrong? Nat Rev Clin Oncol 8:189–190PubMedCrossRefGoogle Scholar
  30. Laffers W, Mittag A, Lenz D, Tarnok A, Gerstner AO (2006) Iterative restaining as a pivotal tool for n-color immunophenotyping by slide-based cytometry. Cytometry A 69(3):127–130PubMedGoogle Scholar
  31. Micheva KD, Bruchez MP (2012) The gain in brain: novel imaging techniques and multiplexed proteomic imaging of brain tissue ultrastructure. Curr Opin Neurobiol 22(1):94–100PubMedCrossRefGoogle Scholar
  32. Michor F, Liphardt J, Ferrari M, Widom J (2011) What does physics have to do with cancer? Nat Rev Cancer 1:657–670CrossRefGoogle Scholar
  33. Mittag A, Lenz D, Gerstner AO, Tarnok A (2006) Hyperchromatic cytometry principles for cytomics using slide based cytometry. Cytometry A 69(7):691–703PubMedGoogle Scholar
  34. Mohamed HA, Mosier DR, Zou LL, Siklós L, Alexianu ME, Engelhardt JI, Beers DR, Le WD, Appel SH (2002) Immunoglobulin Fc gamma receptor promotes immunoglobulin uptake, immunoglobulin-mediated calcium increase, and neurotransmitter release in motor neurons. J Neurosci Res 69(1):110–116PubMedCrossRefGoogle Scholar
  35. Murphy RF (2006) Putting proteins on a map. Nat Biotechnol 24:1223–1224, Comment to Schubert et al. 2006PubMedCrossRefGoogle Scholar
  36. Nattkemper TW, Twellmann T, Schubert W, Ritter H (2003) Human vs. machine: evaluation of flourescence micrographs. Comput Biol Med 33:31–43PubMedCrossRefGoogle Scholar
  37. Nattkemper T, Ritter H, Schubert W (2004) A neuronal classifier enabling highthroughput topological analysis of lymphocytes in tissue sections. IEEE Trans Inform Technol Biomed 5:138–149CrossRefGoogle Scholar
  38. Oeltze S, Freiler W, Hillert R, Doleisch H, Preim B, Schubert W (2011) Interactive, graph-based visual analysis of high-dimensional, multi-parameter fluorescence microscopy data in toponomics. IEEE Trans Vis Comput Graph 17(12):1882–1891PubMedCrossRefGoogle Scholar
  39. Ruetze M, Gallinat S, Wenck H, Deppert W, Knott A (2010) In situ localization of epidermal stem cells using a novel multi epitope ligand cartography approach. Integr Biol 2(5–6):241–249CrossRefGoogle Scholar
  40. Sage (2009) The molecular face of prostate cancer. J Proteome Res 8:1616, Editorial to Schubert et al. 2009Google Scholar
  41. Sampaolesi M, Blot S, D’Antona G, Granger N, Tonlorenzi R, Innocenzi A, Mognol P, Thibaud JL, Galvez BG, Barthélémy I, Perani L, Mantero S, Guttinger M, Pansarasa O, Rinaldi C, Cusella De Angelis MG, Torrente Y, Bordignon C, Bottinelli R, Cossu G (2006) Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature 444(7119):574–579PubMedCrossRefGoogle Scholar
  42. Schmid EM, McMahon HT (2007) Integrating molecular and network biology to decode endocytosis. Nature 448:883–888PubMedCrossRefGoogle Scholar
  43. Schubert W (1990) Multiple antigen-mapping microscopy of human tissue. In: Burger G, Oberholzer M, Vooijs GP (eds) Excerpta medica. Elsevier, Amsterdam. Adv Anal Cell Pathol 97–98Google Scholar
  44. Schubert W (1992) Antigenic determinants of T Iymphocyte/receptor and other leukocyte surface proteins as differential markers of skeletal muscle regeneration: detection of spatially and timely restricted patterns by MAM microscopy. Eur J Cell Biol 58:395–410PubMedGoogle Scholar
  45. Schubert W (1997a) Automated device and method for measuring and identification of molecules or fragments thereof. Patent EP 0180428Google Scholar
  46. Schubert W (1997b) Automatisches Multi-Epitop-Ligand-Kartierungsverfahren. Patent DE 19709348Google Scholar
  47. Schubert W (1999) Method of blocking cytotoxic activity in patients with amyotrophic lateral sclerosis using antibodies to FcgammaRIII. US patent No. 6,638,506 (first published as international patent application WO 99/29731, 1999)Google Scholar
  48. Schubert W (2000) Automated determining and measuring device and method. Patent USA 6,150,173Google Scholar
  49. Schubert W (2002) Polymositis, topological proteomics technology and paradigm for cell invasion dynamics. J Theor Med 4:67–74CrossRefGoogle Scholar
  50. Schubert W (2003) Topological proteomics, toponomics, MELK-technology. Adv Biochem Eng Biotechnol 83:189–209PubMedGoogle Scholar
  51. Schubert W (2005) Method and equipment for automated detection and measurement. Patent JP 3739528Google Scholar
  52. Schubert W (2006a) Cytomics in characterizing toponomes: towards the biological code of the cell. Cytometry A 69:209–211PubMedGoogle Scholar
  53. Schubert W (2006b) Exploring molecular networks directly in the cell. Cytometry A 69:109–112PubMedGoogle Scholar
  54. Schubert W (2007a) A three-symbol code for organized proteomes based on cyclical imaging of protein locations. Cytometry A 71(6):352–360PubMedGoogle Scholar
  55. Schubert W (2007b) Breaking the biological code. Cytometry A 71(10):771–772PubMedGoogle Scholar
  56. Schubert W (2010) On the origin of cell functions encoded in the toponome. J Biotechnol 149(4):252–259PubMedCrossRefGoogle Scholar
  57. Schubert W (2012) In: Lottspeich F, Engels JW (eds) Toponomanalyse, 3rd edn. Springer Spektrum, Berlin/Heidelberg, pp 1140–1151Google Scholar
  58. Schubert W, Bode M, Hillert R, Krusche A, Friedenberger M (2008b) Toponomics and neurotoponomics: a new way to medical systems biology. Expert Rev Proteomics 5:361–369PubMedCrossRefGoogle Scholar
  59. Schubert W, Bonnekoh B, Pommer AJ, Philipsen L, Böckelmann R, Malykh Y, Gollnick H, Friedenberger M, Bode M, Dress AW (2006) Analyzing proteome topology and function by automated multidimensional fluorescence microscopy. Nat Biotechnol 24:1270–1278PubMedCrossRefGoogle Scholar
  60. Schubert W, Friedenberger M, Bode M, Krusche A, Hillert M (2008a) Functional architecture of the cell nucleus: towards comprehensive toponome reference maps of apoptosis. Biochim Biophys Acta 1783(11):2080–2088PubMedCrossRefGoogle Scholar
  61. Schubert W, Friedenberger M, Haars R, Nattkemper T, Ritter H (2002) Automatic recognition of muscle invasive T lymphocytes expressing dipeptidyl-peptidase IV (CD26), and analysis of the associated cell surface phenotypes. J Theor Med 4:67–74CrossRefGoogle Scholar
  62. Schubert W, Gieseler A, Krusche A, Hillert R (2009) Toponome mapping in prostate cancer: detection of 2000 cell surface protein clusters in a single tissue section and cell type specific annotation by using a three symbol code. J Proteome Res 8(6):2696–2707PubMedCrossRefGoogle Scholar
  63. Schubert W, Gieseler A, Krusche A, Serocka P, Hillert R (2012) Next-generation biomarkers based on 100-parameter functional super-resolution microscopy TIS. N Biotechnol 29(5):599–610PubMedCrossRefGoogle Scholar
  64. Schubert W, Masters CL, Beyreuther K (1992) APP + T lymphocytes selectively sorted to endomysial tubes in polymyositis displace NCAM-expressing muscle fibers. Eur J Cell Biol 62:333–342Google Scholar
  65. Selkoe DJ (2011) Resolving controversies on the path to Alzheimer’s therapeutics. Nat Med 17(9):1060–1065PubMedCrossRefGoogle Scholar
  66. Torrente Y, Belicchi M, Marchesi C, Dantona G, Cogiamanian F, Pisati F, Gavina M, Giordano R, Tonlorenzi R, Fagiolari G, Lamperti C, Porretti L, Lopa R, Sampaolesi M, Vicentini L, Grimoldi N, Tiberio F, Songa V, Baratta P, Prelle A,Forzenigo L, Guglieri M, Pansarasa O, Rinaldi C, Mouly V, Butler-Browne GS, Comi GP, Biondetti P, Moggio M, Gaini SM, Stocchetti N, Priori A, D’Angelo MG, Turconi A, Bottinelli R, Cossu G, Rebulla P, Bresolin N (2007) Autologous transplantation of muscle-derived CD133+ stem cells in Duchenne muscle patients. Cell Transplant 16(6):563–577PubMedGoogle Scholar
  67. Wichmann HE, Kuhn KA, Waldenberger M, Schmelcher D, Schuffenhauer S, Meitinger T, Wurst SH, Lamla G, Fortier I, Burton PR, Peltonen L, Perola M, Metspalu A, Riegman P, Landegren U, Taussig MJ, Litton JE, Fransson MN, Eder J, Cambon-Thomsen A, Bovenberg J, Dagher G, van Ommen GJ, Griffith M, Yuille M, Zatloukal K (2011) Comprehensive catalog of European biobanks. Nat Biotechnol 29(9):795–797PubMedCrossRefGoogle Scholar
  68. Zheng B, Cao B, Crisan M, Sun B, Li G, Logar A, Yap S, Pollett JB, Drowley L, Cassino T, Gharaibeh B, Deasy BM, Huard J, Péault B (2007) Prospective identification of myogenic endothelial cells in human skeletal muscle. Nat Biotechnol 25(9):1025–1034PubMedCrossRefGoogle Scholar
  69. Zipf GK (1949) Human behavior and the principle of least effort. Addison-Wesley, Cambridge, MAGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  1. 1.Molecular Pattern Recognition Research (MPRR) GroupOtto-von-Guericke University MagdeburgMagdeburgGermany
  2. 2.Chinese Academy of Science and Max Planck Society (CAS-MPG) Partner Institute for Computational Biology (PICB)ShanghaiChina
  3. 3.Human Toponome Project, ToposNomos LtdMunichGermany