Skip to main content

Pathway Targeting, Antimycobacterial Drug Design

  • Reference work entry
Encyclopedia of Systems Biology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D et al (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544

    PubMed  CAS  Google Scholar 

  • Ducati RG, Basso LA, Santos DS (2007) Mycobacterial shikimate pathway enzymes as targets for drug design. Curr Drug Targets 8:423–435

    PubMed  CAS  Google Scholar 

  • Kim TY, Kim HU, Lee SY (2010) Metabolite-centric approaches for the discovery of antibacterials using genome-scale metabolic networks. Metab Eng 12:105–111

    PubMed  CAS  Google Scholar 

  • Kumar A, Toledo JC, Patel RP, Lancaster JR Jr, Steyn AJ (2007) Mycobacterium tuberculosis DosS is a redox sensor and DosT is a hypoxia sensor. Proc Natl Acad Sci USA 104:11568–11573

    PubMed  CAS  Google Scholar 

  • Majumdar SD, Sharma D, Vashist A, Kaur K, Taneja NK, Chauhan S et al (2010) Co-expression of DevR and DevR(N)-Aph proteins is associated with hypoxic adaptation defect and virulence attenuation of Mycobacterium tuberculosis. PLoS One 5:e9448

    PubMed  Google Scholar 

  • Murphy DJ, Brown JR (2008) Novel drug target strategies against Mycobacterium tuberculosis. Curr Opin Microbiol 11:422–427

    PubMed  CAS  Google Scholar 

  • Parida BK, Douglas T, Nino C, Dhandayuthapani S (2005) Interactions of anti-sigma factor antagonists of Mycobacterium tuberculosis in the yeast two-hybrid system. Tuberculosis (Edinb) 85:347–355

    CAS  Google Scholar 

  • Raman K, Vashisht R, Chandra N (2009) Strategies for efficient disruption of metabolism in Mycobacterium tuberculosis from network analysis. Mol Biosyst 5:1740–1751

    PubMed  CAS  Google Scholar 

  • Rodrigue S, Provvedi R, Jacques PE, Gaudreau L, Manganelli R (2006) The σ factors of Mycobacterium tuberculosis. FEMS Microbiol Rev 30:926–941

    PubMed  CAS  Google Scholar 

  • Sachdeva P, Misra R, Tyagi AK, Singh Y (2010) The sigma factors of Mycobacterium tuberculosis: regulation of the regulators. FEBS J 277:605–626

    PubMed  CAS  Google Scholar 

  • Schreiber M, Res I, Matter A (2009) Protein kinases as antibacterial targets. Curr Opin Cell Biol 21:325–330

    PubMed  CAS  Google Scholar 

  • Spigelman MK (2007) New tuberculosis therapeutics: a growing pipeline. J Infect Dis 196(Suppl 1):S28–S34

    PubMed  Google Scholar 

  • Timm J, Post FA, Bekker LG, Walther GB, Wainwright HC, Manganelli R et al (2003) Differential expression of iron-, carbon-, and oxygen-responsive mycobacterial genes in the lungs of chronically infected mice and tuberculosis patients. Proc Natl Acad Sci USA 100:14321–14326

    PubMed  CAS  Google Scholar 

  • Tyagi JS, Sharma D (2004) Signal transduction systems of mycobacteria with special reference to M. tuberculosis. Curr Sci 86:93–102

    Google Scholar 

  • Voskuil MI, Schnappinger D, Visconti KC, Harrell MI, Dolganov GM, Sherman DR, Schoolnik GK (2003) Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J Exp Med 198:705–713

    PubMed  CAS  Google Scholar 

  • Wayne LG, Sohaskey CD (2001) Nonreplicating persistence of Mycobacterium tuberculosis. Annu Rev Microbiol 55:139–163

    PubMed  CAS  Google Scholar 

  • Williams KJ, Duncan K (2007) Current strategies for identifying and validating targets for new treatment-shortening drugs for TB. Curr Mol Med 7:297–307

    PubMed  CAS  Google Scholar 

  • Zhang Y (2005) The magic bullets and tuberculosis drug targets. Annu Rev Pharmacol Toxicol 45:529–564

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this entry

Cite this entry

Sharma, D., Surolia, A. (2013). Pathway Targeting, Antimycobacterial Drug Design. In: Dubitzky, W., Wolkenhauer, O., Cho, KH., Yokota, H. (eds) Encyclopedia of Systems Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9863-7_568

Download citation

Publish with us

Policies and ethics