Skip to main content

Systems Immunology

  • Reference work entry
  • 139 Accesses

Introduction

Systems immunology is a novel means for studying, analyzing, and understanding complex immune systems using a systems approach. This is an interdisciplinary approach that uses high-throughput technologies and computational methods that can be applied to identify a global map of complex interactions between cell–cell, cell–environment, protein–protein, and protein–DNA interactions. Currently, DNA microarrays, next generation sequencing, and modern mass spectrometry are used to define and monitor all components of the immune system. The overall goal of this approach is to generate a hypothesis, identify new biological rules, and predict the behavior of biological systems. Traditional approaches to studying immune regulation is primarily based on reductionist approaches of molecular biology. They offer a limited view of the complex immune system since there are so many different types of host cells and genes perturbed by the entry of a pathogen. To make things more complex,...

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4419-9863-7_114
  • Chapter length: 6 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   949.99
Price excludes VAT (USA)
  • ISBN: 978-1-4419-9863-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   999.99
Price excludes VAT (USA)
Systems Immunology, Fig. 1

References

  • Ansari HR, Flower DR, Raghava GP (2010) AntigenDB: an immunoinformatics database of pathogen antigens. Nucleic Acids Res 38:D847–D853

    PubMed  CAS  CrossRef  Google Scholar 

  • Bhasin M, Raghava GP (2004) SVM based method for predicting HLA-DRB1*0401 binding peptides in an antigen sequence. Bioinformatics 20:421–423

    PubMed  CAS  CrossRef  Google Scholar 

  • Bhasin M, Raghava GPS (2006) A hybrid approach for predicting promiscuous MHC class I restricted T cell epitopes. J Biosci 32:31–42

    CrossRef  Google Scholar 

  • Bonilla FA, Oettgen HC (2010) Adaptive immunity. J Allergy Clin Immunol 125(2 Suppl 2):S33–S40

    PubMed  CrossRef  Google Scholar 

  • Boxus M, Willems L (2009) Mechanisms of HTLV-1 persistence and transformation. Br J Cancer 101:1497–1501

    PubMed  CAS  CrossRef  Google Scholar 

  • Chavali AK, Gianchandani EP, Tung KS, Lawrence MB, Peirce SM, Papin JA (2008) Characterizing emergent properties of immunological systems with multi-cellular rule-based computational modeling. Trends Immunol 29:589–599

    PubMed  CAS  CrossRef  Google Scholar 

  • Ehrenmann F, Kaas Q, Lefranc MP (2010) IMGT/3Dstructure-DB and IMGT/DomainGapAlign: a database and a tool for immunoglobulins or antibodies, T cell receptors, MHC. Nucleic Acids Res 38:D301–D307

    PubMed  CAS  CrossRef  Google Scholar 

  • Forst CV (2006) Host-pathogen systems biology. Drug Discov Today 11:220–227

    PubMed  CAS  CrossRef  Google Scholar 

  • Gowthaman U, Agrewala JN (2008) In silico tools for predicting peptides binding to HLA-class II molecules: more confusion than conclusion. J Proteome Res 7:154–163

    PubMed  CAS  CrossRef  Google Scholar 

  • Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216

    PubMed  CAS  CrossRef  Google Scholar 

  • Lamkanfi M, Dixit VM (2010) Manipulation of host cell death pathways during microbial infections. Cell Host Microbe 8:44–54

    PubMed  CAS  CrossRef  Google Scholar 

  • Meena LS, Rajni (2010) Survival mechanisms of pathogenic Mycobacterium tuberculosis H37Rv. FEBS J 277:2416–2427

    PubMed  CAS  CrossRef  Google Scholar 

  • Moir S, Chun TW, Fauci AS (2010) Pathogenic mechanisms of HIV disease. Annu Rev Pathol 6:223–248, PMID: 21034222

    CrossRef  CAS  Google Scholar 

  • Pulendran B, Li S, Nakaya HI (2010) Systems vaccinology. Immunity 33:516–529

    PubMed  CAS  CrossRef  Google Scholar 

  • Querec TD, Akondy RS, Lee EK, Cao W, Nakaya HI, Teuwen D, Pirani A, Gernert K, Deng J, Marzolf B, Kennedy K, Wu H, Bennouna S, Oluoch H, Miller J, Vencio RZ, Mulligan M, Aderem A, Ahmed R, Pulendran B (2009) Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat Immunol 10:116–125

    PubMed  CAS  CrossRef  Google Scholar 

  • Ramachandra L, Simmons D, Harding CV (2009) MHC molecules and microbial antigen processing in phagosomes. Curr Opin Immunol 21:98–104

    PubMed  CAS  CrossRef  Google Scholar 

  • Rosenberg E (2005) The diversity of bacterial pathogenicity mechanisms. Genome Biol 6:320

    PubMed  CrossRef  Google Scholar 

  • Saha S, Raghava GP (2006) Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins 65(1):40–48

    PubMed  CAS  CrossRef  Google Scholar 

  • Vita R, Zarebski L, Greenbaum JA, Emami H, Hoof I, Salimi N, Damle R, Sette A, Peters B (2010) The immune epitope database 2.0. Nucleic Acids Res 38:D854–D862

    PubMed  CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudipto Saha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this entry

Cite this entry

Saha, S. (2013). Systems Immunology. In: Dubitzky, W., Wolkenhauer, O., Cho, KH., Yokota, H. (eds) Encyclopedia of Systems Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9863-7_114

Download citation