Encyclopedia of Color Science and Technology

2016 Edition
| Editors: Ming Ronnier Luo

CIE Physiologically Based Color Matching Functions and Chromaticity Diagrams

  • Andrew Stockman
Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-8071-7_326



Because each of the long-, middle-, and short-wavelength-sensitive (L, M, and S) cone types responds univariantly to light, human color vision and human color matches are trichromatic. Trichromatic color matches depend on the spectral sensitivities of the three cones, which are also known as the fundamental color matching functions (or CMFs): \( \overline{l}\left(\lambda \right) \)

This is a preview of subscription content, log in to check access.


  1. 1.
    CIE.: Fundamental chromaticity diagram with physiological axes – Part 1. Technical report pp. 170–171. Central Bureau of the Commission Internationale de l’ Éclairage, Vienna (2006)Google Scholar
  2. 2.
    Stockman, A., Sharpe, L.T.: Spectral sensitivities of the middle- and long-wavelength sensitive cones derived from measurements in observers of known genotype. Vision Res. 40, 1711–1737 (2000)CrossRefGoogle Scholar
  3. 3.
    Stiles, W.S., Burch, J.M.: NPL colour-matching investigation: final report (1958). Opt. Acta 6, 1–26 (1959)ADSCrossRefGoogle Scholar
  4. 4.
    CIE.: Commission Internationale de l’ Éclairage Proceedings, 1931. Cambridge University Press, Cambridge (1932)Google Scholar
  5. 5.
    Wright, W.D.: A re-determination of the trichromatic coefficients of the spectral colours. Trans. Opt. Soc. 30, 141–164 (1928–1929); published online Epub-29Google Scholar
  6. 6.
    Guild, J.: The colorimetric properties of the spectrum. Philos. Trans. R. Soc. Lond. A 230, 149–187 (1931)ADSCrossRefGoogle Scholar
  7. 7.
    CIE.: Commission Internationale de l’Éclairage Proceedings, 1924. Cambridge University Press, Cambridge (1926)Google Scholar
  8. 8.
    Stiles, W.S.: Interim report to the Commission Internationale de l’Éclairage Zurich, 1955, on the National Physical Laboratory’s investigation of colour-matching (1955) with an appendix by W. S. Stiles & J. M. Burch. Opt. Acta 2, 168–181 (1955)ADSCrossRefGoogle Scholar
  9. 9.
    Stockman, A., Sharpe, L.T. Cone spectral sensitivities and color matching: In: Gegenfurtner, K., Sharpe, K.T. (eds.) Color Vision: From Genes to Perception, pp. 53–87. Cambridge University Press, Cambridge (1999)Google Scholar
  10. 10.
    Speranskaya, N.I.: Determination of spectrum color co-ordinates for twenty-seven normal observers. Opt. Spectrosc. 7, 424–428 (1959)ADSGoogle Scholar
  11. 11.
    Sharpe, L.T., Stockman, A., Jägle, H., Knau, H., Klausen, G., Reitner, A., Nathans, J.: Red, green, and red-green hybrid photopigments in the human retina: correlations between deduced protein sequences and psychophysically-measured spectral sensitivities. J. Neurosci. 18, 10053–10069 (1998)Google Scholar
  12. 12.
    Stockman, A., Sharpe, L.T., Fach, C.C.: The spectral sensitivity of the human short-wavelength cones. Vision Res. 39, 2901–2927 (1999); published online EpubAugCrossRefGoogle Scholar
  13. 13.
    Stockman, A., Sharpe, L.T.: Tritanopic color matches and the middle- and long-wavelength-sensitive cone spectral sensitivities. Vision Res. 40, 1739–1750 (2000)CrossRefGoogle Scholar
  14. 14.
    Bongard, M.M., Smirnov, M.S.: Determination of the eye spectral sensitivity curves from spectral mixture curves. Doklady Akademiia nauk S.S.S.R 102, 1111–1114 (1954)Google Scholar
  15. 15.
    Sharpe, L.T., Stockman, A., Jagla, W., Jägle, H.: A luminous efficiency function, V*(λ), for daylight adaptation: a correction. Color Res. Appl. 36, 42–46 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Visual NeuroscienceUCL Institute of OphthalmologyLondonUK