Encyclopedia of Color Science and Technology

2016 Edition
| Editors: Ming Ronnier Luo

Colorant, Nonlinear Optical

  • Maria Manuela Marques RaposoEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-8071-7_184



Light is composed of an electromagnetic field that can interact with the elementary charges in matter, whose response can in turn influence the behavior of the other light waves. When light passes through any material, its electric field induces changes in the polarization of the material’s molecules. In “linear” materials the degree of electron displacement, characterized by the linear polarizability α, is proportional to the strength of the applied electric field.

The distinguishing characteristic of nonlinear optical colorants is that their polarization response to optical waves depends nonlinearly on the applied electric field strength. This can result in the emission of new radiation fields which are altered in phase, frequency, polarization, or amplitude relative to the incident optical radiation. Many of these effects are sensitive to specific characteristics of the local optical properties and interfaces. Multi-photonic absorption can also...

This is a preview of subscription content, log in to check access.


  1. 1.
    Chemla, D.S., Zyss, J.: Nonlinear Optical Properties of Organic Molecules and Crystals, vol. 1 and 2. Academic Press, New York (1987)Google Scholar
  2. 2.
    Prasad, P.N., Williams, D.J.: Introduction to Nonlinear Optical Effects in Molecules and Polymers, pp. 132–174. Wiley, New York (1991)Google Scholar
  3. 3.
    Zyss, J.: Molecular Nonlinear Optics: Materials, Physics and Devices. Academic Press, Boston (1994)Google Scholar
  4. 4.
    Nalwa, H.S., Miyata, S. (eds.): Nonlinear Optics of Organic Molecules and Polymers. CRC Press, New York (1997)Google Scholar
  5. 5.
    Verbiest, T., Houbrechts, S., Kauranen, M., Clays, K., Persoons, A.: Second-order nonlinear optical materials: recent advances in chromophore design. J. Mater. Chem. 7, 2175–2189 (1997)CrossRefGoogle Scholar
  6. 6.
    Meyers, F., Marder, S.R., Perry, J.W.: Advanced polymeric materials - high performance polymers. In: Interrante, L.V., Hampden-Smith, M.J. (eds.) Chemistry of Advanced Materials: An Overview, pp. 207–269. Wiley-VCH, New York (1998)Google Scholar
  7. 7.
    He, G.S., Tan, L.-S., Zheng, Q., Prasad, P.N.: Multiphoton absorbing materials: molecular designs, characterizations, and applications. Chem. Rev. 108, 1245–1330 (2008)CrossRefGoogle Scholar
  8. 8.
    Cho, M.J., Choia, D.H., Sullivan, P.A., Akelaitis, A.J.P., Dalton, L.R.: Recent progress in second-order nonlinear optical polymers and dendrimers. Prog. Polym. Sci. 33, 1013–1058 (2008)CrossRefGoogle Scholar
  9. 9.
    Dalton, L.R., Sullivan, P.A., Bale, D.H.: Electric field poled organic electro-optic materials: state of the art and future prospects. Chem. Rev. 110, 25–55 (2010)CrossRefGoogle Scholar
  10. 10.
    New, G.H.C.: Nonlinear optics: the first 50 years. Contemp. Phys. 52, 281–292 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    Di Bella, Dragonetti, C., Pizzotti, M., Roberto, D., Tessore, F., Ugo, R.: Coordination and organometallic complexes as second-order nonlinear optical molecular materials. Top. Organomet. Chem. 28, 1–55 (2010)Google Scholar
  12. 12.
    Kim, H.S., Cao, T., Pham, T.C.T., Yoon, K.B.: A novel class of nonlinear optical materials based on host–guest composites: zeolites as inorganic crystalline hosts. Chem. Commun. 48, 4659–4673 (2012)CrossRefGoogle Scholar
  13. 13.
    Isakov, D.V., de Matos, G., Belsley, M.S., Almeida, B., Cerca, N.: Strong enhancement of second harmonic generation in 2-methyl-4-nitroaniline nanofibers. Nanoscale 4, 4978–4982 (2012), and references citedADSCrossRefGoogle Scholar
  14. 14.
    Franken, P.A., Hill, A.E., Peters, C.W., Weinreich: Generation of optical harmonics. Phys. Rev. Lett. 7, 118–119 (1961)Google Scholar
  15. 15.
    Reeve, J.E., Anderson, H.L., Clays, K.: Dyes for biological second harmonic generation imaging. Phys. Chem. Chem. Phys. 12, 13848–13498 (2010)CrossRefGoogle Scholar
  16. 16.
    Pawlicki, M., Collins, H.A., Denning, R.G., Anderson, H.L.: Two-photon absorption and the design of two-photon dyes. Angew. Chem. Int. Ed. 48, 3244–3266 (2009)CrossRefGoogle Scholar
  17. 17.
    Varanasi, P.R., Jen, A.K.-Y., Chandrasekhar, J., Namboothiri, I.N.N., Rathna, A.J.: The important role of heteroaromatics in the design of efficient second-order nonlinear optical molecules: theoretical investigation on push − pull heteroaromatic stilbenes. J. Am. Chem. Soc. 118, 12443–12448 (1996)CrossRefGoogle Scholar
  18. 18.
    Breitung, E.M., Shu, C.-F., McMahon, R.J.: Thiazole and thiophene analogues of donor-accceptor stilbenes: molecular hyperpolarizabilities and structure-property relationships. J. Am. Chem. Soc. 122, 1154–1160 (2000)CrossRefGoogle Scholar
  19. 19.
    Raposo, M.M.M., Sousa, A.M.R.C., Kirsch, G., Cardoso, P., Belsley, M., Matos Gomes, E., Fonseca, A.M.C.: Synthesis and characterization of dicyanovinyl-substituted thienylpyrroles as new NLO-chromophores. Org. Lett. 8, 3681–3684 (2006), and references citedCrossRefGoogle Scholar
  20. 20.
    Raposo, M.M.M., Fonseca, A.M.C., Castro, M.C.R., Belsley, M., Cardoso, M.F.S., Carvalho, L.M., Coelho, P.J.: Synthesis and characterization of novel diazenes bearing pyrrole, thiophene and thiazole heterocycles as efficient photochromic and nonlinear optical (NLO) materials. Dyes Pigments 91, 62–73 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of MinhoBragaPortugal