Encyclopedia of Color Science and Technology

2016 Edition
| Editors: Ming Ronnier Luo

High Dynamic Range Imaging

  • Tania PouliEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-8071-7_177



High-dynamic-range imaging (HDRI or HDR) is a collection of hardware and software technologies that allow the capture, processing, and display of image and video content containing a wide range of intensities between the darkest and brightest areas of an image. Lighting conditions in both natural and man-made environments can range from starlight to artificial illumination to bright sunlight. Traditional imaging techniques typically store information using one byte per pixel for each channel, allowing for 256 distinct steps per channel. Consequently, they can only represent a narrow range of this illumination, often resulting in over- or undersaturated regions in the image. In contrast, HDR technologies represent image content using floating-point numbers and thus both allow for a much larger number of intensity steps to be encoded and reduce the distance between consecutive steps in image intensity.



This is a preview of subscription content, log in to check access.


  1. 1.
    Kunkel, T., Reinhard, E.: A reassessment of the simultaneous dynamic range of the human visual system. In: Proceedings of the 7th Symposium on Applied Perception in Graphics and Visualization. ACM, New York (2010)Google Scholar
  2. 2.
    Debevec, P., Malik, J.: Recovering high dynamic range radiance maps from photographs. In: Proceedings of the SIGGRAPH ’97: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques. ACM, New York (1997)Google Scholar
  3. 3.
    Reinhard, E., Ward, G., Pattanaik, S., Debevec, P., Heidrich, W., Myszkowski, K.: High Dynamic Range Imaging: Acquisition, Display and Image-Based Lighting. Morgan Kaufmann Publishers, San Francisco (2010)Google Scholar
  4. 4.
    Tocci, M.D., Kiser, C., Tocci, N., Sen, P.: A versatile HDR video production system. ACM Trans. Graph. 30(4): 41 (2011), 41–41: 10Google Scholar
  5. 5.
    Mertens, T., Kautz, J., Van Reeth, F.: Exposure fusion: a simple and practical alternative to high dynamic range photography. Comput. Graph. Forum 28(1), 161–171 (2009)CrossRefGoogle Scholar
  6. 6.
    Myszkowski, K., Mantiuk, R., Krawczyk, G.: High dynamic range video. Synthesis Lect. Comput. Graph. Animation 2(1), 1–158 (2008)CrossRefGoogle Scholar
  7. 7.
    Seetzen, H., Heidrich, W., Stuerzlinger, W., Ward, G., Whitehead, L., Trentacoste, M., Ghosh, A., Vorozcovs, A.: High dynamic range display systems. ACM Trans. Graph. 23(3), 760–768 (2004)CrossRefGoogle Scholar
  8. 8.
    Seetzen, H., Whitehead, L.A., Ward, G.: 54.2: A High Dynamic Range Display Using Low and High Resolution Modulators. SID Symp. Dig. Tech. Pap. 34, 1450–1453 (2003)CrossRefGoogle Scholar
  9. 9.
    Tumblin, J., Rushmeier, H.: Tone reproduction for computer generated images. IEEE Comput. Graph. Appl. 13(6), 42–48 (1993)CrossRefGoogle Scholar
  10. 10.
    Wandell, B.A.: Foundations of Vision. Sinauer Associates, Sunderland (1995)Google Scholar
  11. 11.
    Naka, K.I., Rushton, W.A.H.: S-potentials from luminosity units in the retina of fish (Cyprinidae). J. Physiol. 185, 587–599 (1966)CrossRefGoogle Scholar
  12. 12.
    Dowling, J.E.: The Retina: An Approachable Part of the Brain. Belknap, Cambridge (1987)Google Scholar
  13. 13.
    Čadík, M., Wimmer, M., Neumann, L., Artusi, A.: Evaluation of HDR tone mapping methods using essential perceptual attributes. Comput. Graph. 32(3), 330–349 (2008)CrossRefGoogle Scholar
  14. 14.
    Schlick, C.: Quantization techniques for the visualization of high dynamic range pictures. In: Proceedings of the Photorealistic Rendering Techniques. Springer, Berlin/Heidelberg/New York (1994)Google Scholar
  15. 15.
    Reinhard, E., Stark, M., Shirley, P., Ferwerda, J.: Photographic tone reproduction for digital images. ACM Trans. Graph. 21(3), 267–276 (2002)CrossRefGoogle Scholar
  16. 16.
    Pattanaik, S.N., Ferwerda, J.A., Fairchild, M.D., Greenberg, D.P.: A multiscale model of adaptation and spatial vision for realistic image display. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '98), pp. 287–298. ACM, New York (1998). doi: 10.1145/280814.280922Google Scholar
  17. 17.
    McCann, J.J., Rizzi, A.: The Art and Science of HDR Imaging. Wiley, Hoboken (2011)CrossRefGoogle Scholar
  18. 18.
    Mantiuk, R., Daly, S., Kerofsky, L.: Display adaptive tone mapping. ACM Trans. Graph. 27(3), 68 (2008)CrossRefGoogle Scholar
  19. 19.
    Banterle, F., Artusi, A., Debattista, K., Chalmers, A.: Advanced High Dynamic Range Imaging: Theory and Practice. AK Peters/CRC Press, Natick (2011)CrossRefGoogle Scholar
  20. 20.
    Oǧuz Akyüz, A., Fleming, R., Riecke, B.E., Reinhard, E., Bülthoff, H.H.: Do HDR displays support LDR content?: a psychophysical evaluation. ACM Trans. Graph. 26(3), Article 38 (2007). doi:10.1145/1276377.1276425Google Scholar
  21. 21.
    Didyk, P., Mantiuk, R., Hein, M., Seidel, H-P.: Enhancement of bright video features for HDR displays. In: Computer Graphics Forum, vol. 27, no. 4, pp. 1265–1274. Blackwell (2008)Google Scholar
  22. 22.
    Rempel, A.G., Trentacoste, M., Seetzen, H., Young, H.D., Heidrich, W., Whitehead, L., Ward, G.: Ldr2hdr: on-the-fly reverse tone mapping of legacy video and photographs. ACM Trans. Graph. 26(3), 39 (2007)CrossRefGoogle Scholar
  23. 23.
    Wang, L., Wei, L-Y., Zhou, K., Guo, B., Shum, H-Y.: High dynamic range image hallucination. In: Proceedings of the 18th Eurographics Conference on Rendering Techniques, pp. 321–326. Eurographics Association (2007)Google Scholar
  24. 24.
    Tumblin, J., Hodgins, J.K., Guenter, B.K.: Two methods for display of high contrast images. ACM Trans. Graph. 18(1), 56–94 (1999)CrossRefGoogle Scholar
  25. 25.
    Mantiuk, R., Mantiuk, R., Tomaszewska, A., Heidrich, W.: Color correction for tone mapping. Comput. Graph. Forum (Proc. Eurographics ’09) 28(2), 193–202 (2009)CrossRefGoogle Scholar
  26. 26.
    Fairchild, M.D.: Color Appearance Models. Addison-Wesley, Reading (2005)Google Scholar
  27. 27.
    Reinhard, E., Pouli, T., Kunkel, T., Long, B., Ballestad, A., Damberg, G.: Calibrated image appearance reproduction. ACM Trans. Graph. 31(6), 201 (2012), 201–201: 211CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.TechnicolorCesson-SévignéFrance