Skip to main content

Data Correcting Approach for Routing and Location in Networks

  • Reference work entry
  • First Online:

Abstract

A data-correcting (DC) algorithm is a branch-and-bound-type algorithm, in which the data of a given problem is “heuristically corrected” at the various stages in such a way that the new instance will be polynomially solvable and its optimal solution is within a prespecified deviation (called prescribed accuracy) from the optimal solution to the original problem. The DC approach is applied to determining exact and approximate global optima of NP-hard problems. DC algorithms are designed for various classes of NP-hard problems including the quadratic cost partition (QCP), simple plant location (SPL), and traveling salesman problems based on the algorithmically defined polynomially solvable special cases. Results of computational experiments on the publicly available benchmark instances as well as on random instances are presented. The striking computational result is the ability of DC algorithms to find exact solutions for many relatively difficult instances within fractions of a second. For example, an exact global optimum of the QCP problem with 80 vertices and 100 % density was found within 0.22 s on a PC with 133-Mhz processor, and for the SPL problem with 200 sites and 200 clients, within 0.2 s on a PC with 733-Mhz processor.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   3,400.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Recommended Reading

  1. B.F. AlBdaiwi, B. Goldengorin, G. Sierksma, Equivalent instances of the simple plant location problem. Comput. Math. Appl. 57, 812–820 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. B.F. AlBdaiwi, D. Ghosh, B. Goldengorin, Data aggregation for p-median problems. J. Comb. Optimi. 21, 348–363 (2011)

    Article  MathSciNet  Google Scholar 

  3. P. Avella, A. Sforza, Logical reduction tests for the p-median problem. Ann. Oper. Res. 86, 105–115 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. P. Avella, A. Sassano, I. Vasil’ev, Computational study of large-scale p-median problems. Math. Program. Ser. A 109, 89–114 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. E. Balas, P. Toth, Branch and bound methods, Chapter 10 in Lawler et al. [58]

    Google Scholar 

  6. J.E. Beasley, Lagrangian heuristics for location problems, Eur. J. Oper. Res. 65, 383–399 (1993)

    Article  MATH  Google Scholar 

  7. J.E. Beasley, OR-Library, Available at the web address, http://people.brunel.ac.uk/~mastjjb/jeb/orlib/pmedinfo.html

  8. A.S. Belenky (ed.), Mathematical modeling of voting systems and elections: theory and applications. Math. Comput. Model. 48(9–10), 1295–1676 (2008)

    Google Scholar 

  9. C. Beltran, C. Tadonki, J.-PH. Vial, Solving the p-median problem with a semi-Lagrangian relaxation. Comput. Optim. Appl. 35, 239–260 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Benati, An improved branch & bound method for the uncapacitated competitive location problem. Ann. Oper. Res. 122, 43–58 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. V.L. Beresnev, On a problem of mathematical standardization theory. Upravliajemyje Sistemy 11, 43–54 (1973) (in Russian)

    Google Scholar 

  12. O. Bilde, J. Krarup, Bestemmelse af optimal beliggenhed af produktionssteder, Research report, IMSOR (1967)

    Google Scholar 

  13. O. Bilde, J. Krarup, Sharp lower bounds and efficient algorithms for the simple plant location problem. Ann. Discret. Math. 1, 79–97 (1977)

    Article  MathSciNet  Google Scholar 

  14. E. Boros, P.L. Hammer, Pseudo-Boolean optimization. Discret. Appl. Math. 123, 155–225 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. O. Briant, D. Naddef, The optimal diversity management problem. Oper. Res. 52, 515–526 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. M.J. Brusco, H.-F. Köhn, Optimal partitioning of a data set based on the p-median problem. Psychometrika 73(1), 89–105 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. N. Christofides, Graph Theory: An Algorithmic Approach (Academic, London, 1975)

    MATH  Google Scholar 

  18. R.L. Church, COBRA: a new formulation of the classic p-median location problem. Ann. Oper. Res. 122, 103–120 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. R.L. Church, BEAMR: an exact and approximate model for the p-median problem. Comput. Oper. Res. 35, 417–426 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. G. Cornuejols, G. Nemhauser, L.A. Wolsey, A canonical representation of simple plant location problems and its applications. SIAM J. Matrix Anal. Appl. (SIMAX) 1(3), 261–272 (1980)

    MathSciNet  MATH  Google Scholar 

  21. G. Cornuejols, G.L. Nemhauser, L.A. Wolsey, The uncapacitated facility location problem, in Discrete Location Theory, ed. by P.B. Mirchandani, R.L. Francis (Wiley-Interscience, New York, 1990), pp. 119–171

    Google Scholar 

  22. H.A. Eiselt, V. Marianov (eds.), Foundations of Location Analysis (Springer, New York/London, 2011)

    Google Scholar 

  23. S. Elloumi, A tighter formulation of the p-median problem. J. Comb. Optim. 19, 69–83 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. D. Erlenkotter, A dual-based procedure for uncapacitated facility location. Oper. Res. 26, 992–1009 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  25. R.D. Galvão, L.A. Raggi, A method for solving to optimality uncapacitated location problems. Ann. Oper. Res. 18, 225–244 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  26. M.R. Garey, D.S. Johnson, Computers and Intractability (Freeman, San Francisco, 1979)

    MATH  Google Scholar 

  27. D. Ghosh, B. Goldengorin, G. Sierksma,, in Handbook of Combinatorial Optimization, vol. 5, ed. by D.-Z. Du, P.M. Pardalos (Springer, Berlin, 2005), pp. 1–53

    Chapter  Google Scholar 

  28. D. Ghosh, B. Goldengorin, G. Sierksma, Data correcting: a methodology for obtaining near-optimal solutions, in Operations Research with Economic and Industrial Applications: Emerging Trends, ed. by S.R. Mohan, S.K. Neogy (Anamaya Publishers, New Delhi, 2005), pp. 119–127

    Google Scholar 

  29. P.C. Gilmore, E.L. Lawler, D.B. Shmoys, Well-solved special cases, Chapter 4 in Lawler et al. [58]

    Google Scholar 

  30. B.L. Golden, S. Raghavan, E.A. Wasil (eds.), The Vehicle Routing Problem: Latest Advances and New Challenges (Springer, New York, 2010)

    Google Scholar 

  31. B.I. Goldengorin, The design of optimal assortment for the vacuum diffusion welding sets. Standarty i Kachestvo 2, pp. 19–21 (1975) (in Russian)

    Google Scholar 

  32. B. Goldengorin, Methods of solving multidimensional unification problems. Upravljaemye Sistemy 16, 63–72 (1977) (in Russian)

    MathSciNet  Google Scholar 

  33. B. Goldengorin, A correcting algorithm for solving some discrete optimization problems. Sov. Math. Dokl. 27, 620–623 (1983)

    Google Scholar 

  34. B. Goldengorin, A correcting algorithm for solving allocation type problems. Autom. Remote Control 45, 590–598 (1984)

    MathSciNet  Google Scholar 

  35. B. Goldengorin, Correcting algorithms for solving multivariate unification problems. Sov. J. Comput. Syst. Sci. 1, 99–103 (1985)

    MathSciNet  Google Scholar 

  36. B. Goldengorin, On the exact solution of problems of unification by correcting algorithms. Doklady Akademii, Nauk, SSSR 294, 803–807 (1987)

    MathSciNet  Google Scholar 

  37. B. Goldengorin, Requirements of Standards: Optimization Models and Algorithms (Russian Operations Research, Hoogezand, 1995)

    Google Scholar 

  38. B. Goldengorin, Data Correcting Algorithms in Combinatorial Optimization, Ph.D. thesis, SOM Research Institute, University of Groningen, Groningen, The Netherlands, 2002

    MATH  Google Scholar 

  39. B. Goldengorin, Maximization of submodular functions: theory and enumeration algorithms. Eur. J. Oper. Res. 198, 102–112 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. B. Goldengorin, D. Ghosh, The multilevel search algorithm for the maximization of submodular functions applied to the quadratic cost partition problem. J. Glob. Optim. 32, 65–82 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  41. B. Goldengorin, D. Krushinsky, Complexity evaluation of benchmark instances for the p-median problem. Math. Comput. Model. 53, 1719–1736 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. B. Goldengorin, D. Krushinsky, A computational study of the Pseudo-Boolean approach to the p-median problem applied to cell formation, in Network Optimization. Lecture Notes in Computer Science, vol. 6701 (Springer, Berlin/Heidelberg, 2011), pp. 503–516

    Chapter  Google Scholar 

  43. B. Goldengorin, D. Krushinsky, J. Slomp, Flexible PMP approach for large-size cell formation. Oper. Res. 60, 1157–1166

    Google Scholar 

  44. B. Goldengorin, G. Sierksma, G.A. Tijssen, M. Tso, The data-correcting algorithm for minimization of supermodular functions. Manag. Sci. 45, 1539–1551 (1999)

    Article  MATH  Google Scholar 

  45. B. Goldengorin, D. Ghosh, G. Sierksma, Branch and peg algorithms for the simple plant location problem. Comput. Oper. Res. 30, 967–981 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  46. B. Goldengorin, G.A. Tijssen, D. Ghosh, G. Sierksma, Solving the simple plant location problem using a data correcting approach. J. Glob. Optim. 25, 377–406 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  47. G. Gutin, A.P. Punnen (eds.), The Traveling Salesman Problem and its Variations (Kluwer, Dordrecht, 2002)

    MATH  Google Scholar 

  48. S.L. Hakimi, Optimum locations of switching centers and the absolute centers and medians of a graph. Oper. Res. 12, 450–459 (1964)

    Article  MATH  Google Scholar 

  49. S.L. Hakimi, Optimum distribution of switching centers in a communication network and some related graph theoretic problems. Oper. Res. 13, 462–475 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  50. P.L. Hammer, Plant location – a Pseudo-Boolean approach. Isr. J. Technol. 6, 330–332 (1968)

    MATH  Google Scholar 

  51. R.M. Karp, A patching algorithm for the nonsymmetric traveling salesman problem. SIAM J. Comput. 8(4), 561–573 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  52. V.R. Khachaturov, Some Problems of the Consecutive Calculation Method and Its Applications to Location Problems, Ph.D. thesis, Central Economics and Mathematics Institute, Russian Academy of Sciences, Moscow, 1968, (in Russian)

    Google Scholar 

  53. V.R. Khachaturov, Mathematical Methods of Regional Programming (Nauka, Moscow, 1989), (in Russian)

    MATH  Google Scholar 

  54. B.M. Khumawala, An efficient branch and bound algorithm for the warehouse location problem. Manag. Sci. 18, B718–B731 (1975)

    Google Scholar 

  55. M. Körkel, On the exact solution of large-scale simple plant location problems. Eur. J. Oper. Res. 39, 157–173 (1989)

    Article  MATH  Google Scholar 

  56. Y.A. Koskosidis, W.B. Powell, Clustering algorithms for consolidation of customer orders into vehicle shipments. Transp. Res. 26B, 365–379 (1992)

    Article  Google Scholar 

  57. A. Krause, SFO: a toolbox for submodular function optimization. J. Mach. Learn. Res. 11, 1141–1144 (2010)

    MATH  Google Scholar 

  58. E.L. Lawler, J.K. Lenstra, A.H.G. Rinooy Kan, D.B. Shmoys (eds.), The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization (Wiley-Interscience, Chichester/ New York, 1985)

    MATH  Google Scholar 

  59. H. Lee, G.L. Nemhauser, Y. Wang, Maximizing a submodular function by integer programming: polyhedral results for the quadratic case. Eur. J. Oper. Res. 94, 154–166 (1996)

    Article  MATH  Google Scholar 

  60. L. Lovasz, Submodular functions and convexity, in Mathematical Programming: The State of the Art, ed. by A. Bachem, M. Grötschel, B. Korte (Springer, Berlin, 1983), pp. 235–257

    Chapter  Google Scholar 

  61. M. Minoux, Accelerated greedy algorithms for maximizing submodular set functions, in Actes Congres IFIP, ed. by J. Stoer (Springer, Berlin, 1977), pp. 234–243

    Google Scholar 

  62. N. Mladenovic, J. Brimberg, P. Hansen, J.A. Moreno-Peréz, The p-median problem: a survey of metaheuristic approaches. Eur. J. Oper. Res. 179, 927–939 (2007)

    Article  MATH  Google Scholar 

  63. J.M. Mulvey, M.P. Beck, Solving capacitated clustering problems. Eur. J. Oper. Res. 18, 339–348 (1984)

    Article  MATH  Google Scholar 

  64. E.D. Nering, A.W. Tucker. Linear Programs and Related Problems (Academic, San Diego, 1993)

    Google Scholar 

  65. D.W. Pentico, The assortment problem: a survey. Eur. J. Oper. Res. 190, 295–309 (2008)

    Article  MathSciNet  Google Scholar 

  66. H. Pirkul, Efficient algorithms for the capacitated concentrator location problem. Comput. Oper. Res. 14(3), 197–208 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  67. J. Reese, Solution methods for the p-median problem: an annotated bibliography. Networks 48, 125–142 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  68. G. Reinelt, TSPLIB 95 (1995), http://www.iwr.uni-heidelberg.de/iwr/comopt/soft/TSPLIB95/TSPLIB.html

  69. C.S. ReVelle, R. Swain, Central facilities location. Geogr. Anal. 2, 30–42 (1970)

    Article  Google Scholar 

  70. C.S. ReVelle, H.A. Eiselt, M.S. Daskin, A bibliography for some fundamental problem categories in discrete location science. Eur. J. Oper. Res. 184, 817–848 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  71. K.E. Rosing, C.S. ReVelle, H. Rosing-Vogelaar, The p-median and its linear programming relaxation: an approach to large problems. J. Oper. Res. Soc. 30, 815–822 (1979)

    MATH  Google Scholar 

  72. E.L.F. Senne, L.A.N. Lorena, M.A. Pereira, A branch-and-price approach to p-median location problems. Comput. Oper. Res. 32, 1655–1664 (2005)

    Article  MathSciNet  Google Scholar 

  73. TSP–library, Available at the web address http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

  74. L. Wolsey, Mixed integer programming, in Wiley Encyclopedia of Computer Science and Engineering, ed. by B. Wah (Wiley, Chichester, 2008)

    Google Scholar 

  75. Y. Won, K.C. Lee, Modified p-median approach for efficient GT cell formation. Comput. Ind. Eng. 46, 495–510 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This work was carried out at the Laboratory of Algorithms and Technologies for Networks Analysis, National Research University Higher School of Economics, and supported by the Ministry of Education and Science of Russian Federation, Grant No. 11.G34.31.0057, and by the Scientific Foundation of the National Research University Higher School of Economics, project “Teachers–Students” No. 11-04-0008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Goldengorin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Goldengorin, B. (2013). Data Correcting Approach for Routing and Location in Networks. In: Pardalos, P., Du, DZ., Graham, R. (eds) Handbook of Combinatorial Optimization. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7997-1_84

Download citation

Publish with us

Policies and ethics