Maximum Flow Problems and an NP-Complete Variant on Edge-Labeled Graphs

Reference work entry


The aim of this chapter is to present an overview of the main results for a well-known optimization problem and an emerging optimization area, as well as introducing a new problem which is related to both of them. The first part of the chapter presents an overview of the main existing results for the classical maximum flow problem. The maximum flow problem is one of the most studied optimization problems in the last decades. Besides its many practical applications, it also arises as a subproblem of several other complex problems (e.g., min cost flow, matching, covering on bipartite graphs). Subsequently, the chapter introduces some problems defined on edge-labeled graphs by reviewing the most relevant results in this field. Edge-labeled graphs are used to model situations where it is crucial to represent qualitative differences (instead of quantitative ones) among different regions of the graph itself. Finally, the maximum flow problem with the minimum number of labels (MF-ML) problem is presented and discussed. The aim is to maximize the network flow as well as the homogeneity of the solution on a capacitated network with logic attributes.

This problem finds a practical application, for example, in the process of water purification and distribution.


Distance Label Active Vertex Residual Network Residual Graph Maximum Flow Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Recommended Reading

  1. 1.
    A. Abouelaoualim, K. Ch. Das, L. Faria, Y. Manoussakis, C. Martinhon, R. Saad, Paths and trails in edge-colored graphs. Theor. Comput. Sci. 409, 497–510 (2008)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    A. Abouelaoualim, K.C. Das, M. Karpinski, Y. Manoussakis, C.A. Martinhon, R. Saad, W.F. de la Vega, Cycles, paths and trails in edge-colored graphs with given degrees. J. Graph Theory 64, 63–86 (2010)MathSciNetMATHGoogle Scholar
  3. 3.
    R. Agueda, V. Borozan, Y. Manoussakis, G. Mendy, R. Muthu, Sufficient conditions for the existence of spanning coloredt rees in edge-colored graphs. Discret. Math. (2012). doi:10.1016/j.disc.2012.01.031Google Scholar
  4. 4.
    R.K. Ahuja, J.B. Orlin, A fast and simple algorithm for the maximum flow problem. Oper. Res. 37, 748–759 (1989)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    R.K. Ahuja, J.B. Orlin, Distance-directed augmenting path algorithms for maximum flow and parametric maximum flow problems. Nav. Res. Logist. 38, 413–430 (1991)CrossRefMATHGoogle Scholar
  6. 6.
    J.B. Ahuja, R.K. Orlin, R.E. Tarjan, Improved time bounds for the maximum flow problem. SIAM J. Comput. 18, 939–954 (1989)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    R.K. Ahuja, T.L. Magnanti, J.B. Orlin, Network Flows: Theory, Algorithms, and Applications (Prentice-Hall, Englewood Cliffs, 1993)MATHGoogle Scholar
  8. 8.
    J. Bang-Jensen, G. Gutin, Alternating cycles and trails in 2-edge-coloured complete multigraphs. Discret. Math. 188(1–3), 61–72 (1998)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    H. Broersma, X. Li, Spanning trees with many or few colors in edge-colored graphs. Discuss. Math. Graph Theory 17(2), 259–269 (1997)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    T. Brüggemann, J. Monnot, G.J. Woeginger, Local search for the minimum label spanning tree problem with bounded color classes. Oper. Res. Lett. 31, 195–201 (2003)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    M. Captivo, J.C. Climaco, M.M. Pascoal, A mixed integer linear formulation for the minimum label spanning tree problem. Comput. Oper. Res. 36, 3082–3085 (2009)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    R.D. Carr, S. Doddi, G. Konjedov, M. Marathe, On the red-blue set cover problem, in In Proceedings of the 11th ACN-SIAM Symposium on Discrete Algorithms, 2000, pp. 345–353. ISBN: 0-89871-453-2Google Scholar
  13. 13.
    F. Carrabs, R. Cerulli, M. Gentili, The labeled maximum matching problem. Comput. Oper. Res. 36(6), 1859–1871 (2009)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    R. Cerulli, D. Granata, Varianti colorate del problema del massimo flusso. Technical report, University of Salerno, 2009Google Scholar
  15. 15.
    R. Cerulli, A. Fink, M. Gentili, S. Voß, Metaheuristics comparison for the minimum labelling spanning tree problem, in The Next Wave in Computing, Optimization, and Decision Technologies, ed. by B.L. Golden, S. Raghavan, E.A. Wasil (Springer, New York, 2005), pp. 93–106CrossRefGoogle Scholar
  16. 16.
    R. Cerulli, P. Dell’Olmo, M. Gentili, A. Raiconi, Heuristic approaches for the minimum labelling hamiltonian cycle problem. Electronic Notes Discret. Math. 25, 131–138 (2006). CTW2006 – Cologne-Twente Workshop on Graphs and Combinatorial Optimization MathSciNetCrossRefGoogle Scholar
  17. 17.
    R. Cerulli, A. Fink, M. Gentili, S. Voß, Extensions of the minimum labeling spanning tree problem. J. Telecommun. Inf. Technol. 4, 39–45 (2006)Google Scholar
  18. 18.
    R. Cerulli, M. Gentili, A. Iossa, Efficient preflow push algorithms. Comput. Oper. Res. 35, 2694–2708 (2008)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    R.S. Chang, S.J. Leu, The minimum labeling spanning trees. Inf. Process. Lett. 63(5), 277–282 (1997)MathSciNetCrossRefGoogle Scholar
  20. 20.
    J. Cheriyan, K. Mehlhorn, An analysis of the highest-level selection rule in the preflow-push max-flow algorithm. Inf. Process. Lett. 69, 239–242 (1999)MathSciNetCrossRefGoogle Scholar
  21. 21.
    R.V. Cherkasky, An algorithm for constructing maximal flows in networks with complexity of o(v 2\sqrt{E})operations. Math. Methods Solut. Econ. Probl. 7, 112–125 (1977) (In Russian)Google Scholar
  22. 22.
    S. Consoli, J.A. Moreno-Perez, K. Darby-Dowman, N. Mladenovic, Discrete particle swarm optimization for the minimum labeling steiner tree problem, in Nature Inspired Cooperative Strategies for Optimization (NICSO 2007), ed. by N. Krasnogor, G. Nicosia, M. Pavone, D. Pelta (Springer, Berlin, 2008), pp. 313–322CrossRefGoogle Scholar
  23. 23.
    S. Consoli, K. Darby-Dowman, N. Mladenovic, J.A. Moreno-Perez, Greedy randomized adaptive search and variable neighbourhood search for the minimum labelling spanning tree problem. Eur. J. Oper. Res. 196, 440–449 (2009)CrossRefMATHGoogle Scholar
  24. 24.
    S. Consoli, K. Darby-Dowman, N. Mladenovic, J.A. Moreno-Perez, Variable neighbourhood search for the minimum labelling steiner tree problem. Ann. Oper. Res. 172, 71–96 (2009)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    S. Consoli, J.A. Moreno-Perez, K. Darby-Dowman, N. Mladenovic, Discrete particle swarm optimization for the minimum labeling steiner tree problem. Nat. Comput. 9, 29–46 (2010)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    B. Couëtoux, L. Gourvès, J. Monnot, O.A. Telelis, Labeled traveling salesman problems: complexity and approximation. Discret. Optim. 7(1–2), 74–85 (2010)CrossRefMATHGoogle Scholar
  27. 27.
    E.A. DINIC, Algorithm for solution of a problem of maximum flow in networks with power estimation. Sov. Math. Dokl. II, 1277–1280 (1970)Google Scholar
  28. 28.
    J. Edmonds, R.M. Karp, Theoretical improvements in algorithmic efficiency for network flow problems. J. ACM 19, 248–264, (1972)CrossRefMATHGoogle Scholar
  29. 29.
    S. Even, Graph Algorithms. Computer Science Press, Potomac (1979)MATHGoogle Scholar
  30. 30.
    M.R. Fellows, J. Guo, I.A. Kanj, The parameterized complexity of some minimum label problems, in Graph-Theoretic Concepts in Computer Science, ed. by C. Paul, M. Habib (Springer, Berlin/New York, 2009), pp. 88–99Google Scholar
  31. 31.
    L.R. Ford, D.R. Fulkerson, Maximal flow through a network. Can. J. Math. 8, 399–404 (1956)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    L.R. Ford, D.R. Fulkerson, A simple algorithm for finding maximal network flows and an application to the hitchcock problem. Can. J. Math. 9, 210–218 (1957)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    L.R. Ford, D.R. Fulkerson, Flows in Networks (Princeton University Press, Princeton, 1962)MATHGoogle Scholar
  34. 34.
    G. Galbiati, The complexity of a minimum reload cost diameter problem. Discret. Appl. Math. 156(18), 3494–3497 (2008)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Z. Galil, An o(n 5 ∕ 3 m 2 ∕ 3) algorithm for the maximal flow problem. Acta Inform. 14, 221–242 (1980)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Z. Galil, A. Naamad, An o(nm(logn)2) algorithm for the maximal flow problem. J. Comput. Syst. Sci. 21, 203–217 (1980)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    A.V. Goldberg, R.E. Tarjan, A new approach to the maximum flow problem. J. ACM 35, 921–940 (1988)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    A.V. Goldberg, E. Tardos, R.E. Tarjan, Network flow algorithms, in Flows, Paths and VLSI, ed. by B. Korte, L. Lovasz, H.J. Promel, A. Schrijver (Springer, Berlin, 1990), pp. 101–164 (1990)Google Scholar
  39. 39.
    R. Hassin, J. Monnot, D. Segev, Approximation algorithms and hardness results for labeled connectivity problem. J. Comb. Optim. 14, 437–453 (2007)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    N. Jozefowiez, G. Laporte, F. Semet, A branch-and-cut algorithm for the minimum labeling hamiltonian cycle problem and two variants. Comput. Oper. Res. 38, 1534–1542 (2011)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    A.V. Karzanov, Determining the maximal flow in a network by the method of preflows. Sov. Math. Dokl. 15, 434–437 (1974)MATHGoogle Scholar
  42. 42.
    S.O. Krumke, H.-C. Wirth, On the minimum label spanning tree problem. Inf. Process. Lett. 66, 81–85 (1998)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    E. Lawler, Combinatorial Optimization: Networks and Matroids (Holt, Reinhart, and Wiston, New York, 1976)MATHGoogle Scholar
  44. 44.
    S.N. Maheshwari, J. Cheriyan, Analysis of preflow push algorithms for maximum network flow. SIAM J. Comput. 18(6), 1057–1086 (1989)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    G. Mazzoni, S. Pallottino, M.G. Scutellá, The maximum flow problem: a max-preflow approach. Eur. J. Oper. Res. 53, 257–278 (1991)CrossRefMATHGoogle Scholar
  46. 46.
    N. Mladenović, P. Hansen, Variable neighborhood search. Comput. Oper. Res. 24(11), 1097–1100 (1997)MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    N. Mladenović, P. Hansen, Variable neighbourhood search: principles and applications. Eur. J. Oper. Res. 130, 449–467 (2001)CrossRefMATHGoogle Scholar
  48. 48.
    N. Mladenović, P. Hansen, Variable neighbourhood search. Eur. J. Oper. Res. 130(11), 145–185 (2003)Google Scholar
  49. 49.
    N. Mladenović, P. Hansen, B. Jaumard, A. Parreira, Variable neighborhood search for weighted maximum satisfiability problem. Les Cahiers du GERAD G-2000-62, Montréal, 2000Google Scholar
  50. 50.
    J. Monnot, The labeled perfect matching in bipartite graphs. Inf. Process. Lett. 96(3), 81–88 (2005)MathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    J. Monnot, A note on the hardness results for the labeled perfect matching problems in bipartite graphs. RAIRO 42, 315–324 (2008)MathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    C.H. Papadimitriou, K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity (Dover, Mineola, 1998)MATHGoogle Scholar
  53. 53.
    J.C. Picard, H.D. Ratliff, Minimum cuts and related problems. Networks 5, 357–370 (1975)MathSciNetCrossRefMATHGoogle Scholar
  54. 54.
    Y. Shiloach, An o(nI(log)2 I) maximum-flow algorithm. Technical report, STAN-CS-78-802, Computer Science Department, Stanford University, Stanford, 1978Google Scholar
  55. 55.
    D.D. Sleator, An o(nmlogn) algorithm for maximum network flow. Technical report, STAN-CS-80-831, Computer Science Department, Stanford University, Stanford, 1980Google Scholar
  56. 56.
    D.D. Sleator, R.E. Tarjan, A data structure for dynamic trees. J. Comput. Syst. Sci. 26, 362–391 (1983)MathSciNetCrossRefMATHGoogle Scholar
  57. 57.
    J. Steffan, H.-C. Wirth, Reload cost problems: minimum diameter spanning tree. Discret. Appl. Math. 113(1), 73–85 (2001)MathSciNetCrossRefMATHGoogle Scholar
  58. 58.
    S. Szeider, Finding paths in graphs avoiding forbidden transitions. Discret. Appl. Math. 126, 261–273 (2003)MathSciNetCrossRefMATHGoogle Scholar
  59. 59.
    R.E. Tarjan, Data Structures and Network Algorithms (Society for Industrial and Applied Mathematics, Philadelphia, 1983)CrossRefGoogle Scholar
  60. 60.
    Y. Wan, G. Chen, Y. Xu, A note on the minimum label spanning tree. Inf. Process. Lett. 84, 84–99 (2002)MathSciNetGoogle Scholar
  61. 61.
    Y. Xiong, B. Golden, E. Wasil, A one-parameter genetic algorithm for the minimum labeling spanning tree problem. IEEE Trans. Evolut. Comput. 9(1), 55–60 (2005)CrossRefGoogle Scholar
  62. 62.
    Y. Xiong, B. Golden, E. Wasil, Worst-case behavior of the MVCA heuristic for the minimum labeling spanning tree problem. Oper. Res. Lett. 33(1), 77–80 (2005)CrossRefMATHGoogle Scholar
  63. 63.
    Y. Xiong, B. Golden, E. Wasil, Improved heuristics for the minimum labelling spanning tree problem. IEEE Trans. Evolut. Comput. 10(6), 700–703 (2006)CrossRefGoogle Scholar
  64. 64.
    Y. Xiong, B. Golden, E. Wasil, The colorful traveling salesman problem, in Extending the Horizons: Advances in Computing, Optimization, and Decision Technologies, ed. by E.K. Baker et al. (Springer, New York, 2007), pp. 115–123CrossRefGoogle Scholar
  65. 65.
    Y. Xiong, B. Golden, E. Wasil, S. Chen, The label-constrained minimum spanning tree problem, in Telecommunications Modeling, Policy, and Technology, ed. by S. Raghavan, B.L. Golden, E.A. Wasil (Springer, New York, 2008), pp. 39–50CrossRefGoogle Scholar
  66. 66.
    S. Yuan, S. Varma, J.P. Jue, Minimum-color path problems for reliability in mesh networks, in INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings IEEE, vol. 4, Miami, 2005, pp. 2658-2669Google Scholar
  67. 67.
    P. Zhang, J.-Y. Cai, L.-Q. Tang, W.-B. Zhao, Approximation and hardness results for label cut and related problem. J. Comb. Optim. 21, 192-208 (2011)MathSciNetCrossRefMATHGoogle Scholar
  68. 68.
    U. Zwick, The smallest networks on which the ford-fulkerson maximum flow procedure may fail to terminate. Theor. Comput. Sci. 148, 165-170 (1995)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Statistics, Probability and Applied StatisticsUniversity of Rome “La Sapienza”RomeItaly
  2. 2.Department of MathematicsUniversity of SalernoFisciano (SA)Italy
  3. 3.Department of Computer ScienceUniversity of PisaPisaItaly
  4. 4.Department of MathematicsUniversity of SalernoFisciano (SA)Italy

Personalised recommendations