Abstract
The survey presents an overview of approximation algorithms for the classical bin packing problem and reviews the more important results on performance guarantees. Both on-line and off-line algorithms are analyzed. The investigation is extended to variants of the problem through an extensive review of dual versions, variations on bin sizes and item packing, as well as those produced by additional constraints. The bin packing papers are classified according to a novel scheme that allows one to create a compact synthesis of the topic, the main results, and the corresponding algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Recommended Reading
M. Adler, P.B. Gibbons, Y. Matias, Scheduling space sharing for internet advertising. J. Sched. 5, 103–119 (2002) \(\bullet \ \ pack\vert \mathit{off - line}\vert \mathit{running - time}\vert mutex.\)
S. Albers, Better bounds for on-line scheduling, in Proceedings of the 29th Annual ACM Symposium on Theory of Computing, El Paso, TX, 1997, pp. 130–139 \(\bullet \ \ mincap\vert \mathit{on - line}\vert R_{A}\mathit{bound}.\)
N. Alon, Y. Azar, G.J. Woeginger, T. Yadid, Approximation schemes for scheduling, in Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, LA (SIAM, 1997), pp. 493–500 \(\bullet \ \ mincap\vert \mathit{off - line}\vert PTAS.\)
R.J. Anderson, E.W. Mayr, M.K. Warmuth, Parallel approximation algorithms for bin packing. Inf. Comput. 82, 262–277 (1989) \(\bullet \ \ pack\vert \mathit{off - line}\vert \mathit{running - time}.\)
S.F. Assmann, Problems in Discrete Applied Mathematics. PhD thesis, Mathematics Department MIT, Cambridge, MA, 1983
S.F. Assmann, D.S. Johnson, D.J. Kleitman, J.Y.-T. Leung, On a dual version of the one-dimensional bin packing problem. J. Algorithms 5, 502–525 (1984) \(\bullet \ \ cover\vert \mathit{on - line},\mathit{off - line},\mathit{open - end}\vert R_{A}^{\infty }.\)
Y. Azar, O. Regev, On-line bin-stretching. Theor. Comput. Sci. 268, 17–41 (2001) \(\bullet \ \ mincap\vert \mathit{on - line}\vert R_{A}\mathit{bound}\vert stretching.\)
Y. Azar, J. Boyar, L.M. Favrholdt, K.S. Larsen, M.N. Nielsen, Fair versus unrestricted bin packing, in SWAT ’00, 7th Scandinavian Workshop on Algorithm Theory, Bergen, Norway. Lecture Notes in Computer Science, vol. 1851 (Springer, 2000), pp. 200–213. This is the preliminary version of [9]
Y. Azar, J. Boyar, L. Epstein, L.M. Favrholdt, K.S. Larsen, M.N. Nielsen, Fair versus unrestricted bin packing. Algorithmica 34, 181–196 (2002) \(\bullet \ \ maxcard(subset)\vert \mathit{on - line},conservative\vert R_{A}\mathit{bound}.\)
L. Babel, B. Chen, H. Kellerer, V. Kotov, On-line algorithms for cardinality constrained bin packing problems, in ISAAC 2001, Christchurch, New Zealand. Lecture Notes in Computer Science, vol. 2223 (Springer, 2001), pp. 695–706. This is the preliminary version of [11]
L. Babel, B. Chen, H. Kellerer, V. Kotov, On-line algorithms for cardinality constrained bin packing problems. Discret. Appl. Math. 143, 238–251 (2004) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\vert s_{i} \leq 1/k.\)
B.S. Baker, A new proof for the first-fit decreasing bin-packing algorithm. J. Algorithms 6, 49–70 (1985) \(\bullet \ \ pack\vert \mathit{off - line}\vert R_{A}^{\infty }.\)
B.S. Baker, E.G. Coffman Jr., A tight asymptotic bound for next-fit-decreasing bin-packing. SIAM J. Algebra. Discret. Methods 2, 147–152 (1981) \(\bullet \ \ pack\vert \mathit{off - line}\vert R_{A}^{\infty }\vert s_{i} \leq 1/k.\)
J. Balogh, J. Békési, G. Galambos, M.C. Markót, Improved lower bounds for semi-online bin packing problems. Computing 84, 139–148 (2009) \(\bullet \ \ pack\vert \mathit{on - line},repack\vert R_{A}^{\infty }\mathit{bounds}.\)
J. Balogh, J. Békési, G. Galambos, New lower bounds for certain bin packing algorithms, in WAOA 2010, Liverpool, UK. Lecture Notes in Computer Science, vol. 6534 (Springer, 2011), pp. 25–36 \(\bullet \ \ pack\vert \mathit{on - line},\mathit{off - line}\vert R_{A}^{\infty }\mathit{bound}.\)
N. Bansal, Z. Liu, A. Sankar, Bin-packing with fragile objects, in 2nd IFIP International Conference on Theoretical Computer Science (TCS 2002), vol. 223 (Montréal, Québec, Canada, 2001), pp. 38–46
N. Bansal, Z. Liu, A. Sankar, Bin-packing with fragile objects and frequency allocation in cellular networks. Wirel. Netw. 15, 821–830 (2009) \(\bullet \ \ pack\vert \mathit{off - line}\vert R_{A}^{\infty }\vert controllable.\)
A. Bar-Noy, R.E. Ladner, T. Tamir, Windows scheduling as a restricted version of bin packing. ACM Trans. Algorithms 3, 1–22 (2007) \(\bullet \ \ pack\vert \mathit{off - line}\vert R_{A}\vert discrete.\)
Y. Bartal, A. Fiat, H. Karloff, R. Vohra, New algorithms for an ancient scheduling problem, in Proceedings of the 24th Annual ACM Symposium on Theory of Computing, Victoria, Canada, 1992, pp. 51–58 \(\bullet \ \ mincap\vert \mathit{on - line}\vert R_{A}\mathit{bound}.\)
Y. Bartal, H. Karloff, Y. Rabani, A better lower bound for on-line scheduling. Inf. Process. Lett. 50, 113–116 (1994) \(\bullet \ \ mincap\vert \mathit{on - line}\vert R_{A}\mathit{bound}.\)
W. Bein, J.R. Correa, X. Han, A fast asymptotic approximation scheme for bin packing with rejection. Theor. Comput. Sci. 393, 14–22 (2008) \(\bullet \ \ pack\vert \mathit{off - line}\vert PTAS\vert \{B_{i}\},controllable.\)
J. Békési, G. Galambos, A 5/4 linear time bin packing algorithm. Technical report OR-97-2, Teachers Trainer College, Szeged, Hungary, 1997. This is the preliminary version of [23]
J. Békési, G. Galambos, H. Kellerer, A 5/4 linear time bin packing algorithm. J. Comput. Syst. Sci. 60, 145–160 (2000) \(\bullet \ \ pack\vert \mathit{off - line},\mathit{linear - time}\vert R_{A}^{\infty }.\)
R. Berghammer, F. Reuter, A linear approximation algorithm for bin packing with absolute approximation factor 3/2. Sci. Comput. Program. 48, 67–80 (2003) \(\bullet \ \ pack\vert \mathit{linear - time}\vert R_{A}.\)
V. Bilo, On the packing of selfish items, in Proceedings of the 20th International Parallel and Distributed Processing Sysmposium (IPDPS), Rhodes Island, Greece (IEEE, 2006), pp. 25–29 \(\bullet \ \ pack\vert repack\vert R_{A}^{\infty }.\)
J. Blazewicz, K. Ecker, A linear time algorithm for restricted bin packing and scheduling problems. Oper. Res. Lett. 2, 80–83 (1983) \(\bullet \ \ mincap,pack\vert \mathit{off - line},\mathit{linear - time}\vert \mathit{running - time}\vert restricted.\)
J. Boyar, L.M. Favrholdt, The relative worst order ratio for online algorithms. ACM Trans. Algorithms 3, 1–24 (2007) \(\bullet \ \ pack,maxcard(subset)\vert \mathit{on - line}.\)
J. Boyar, K.S. Larsen, M.N. Nielsen, The accomodation function: a generalization of the competitive ratio. SIAM J. Comput. 31, 233–258 (2001) \(\bullet \ \ maxcard(subset)\vert \mathit{on - line},conservative\vert R_{A}\mathit{bound}\vert restricted.\)
J. Boyar, L. Epstein, L.M. Favrholdt, J.S. Kohrt, K.S. Larsen, M.M. Pedersen, S. Wøhlk, The maximum resource bin packing problem, in Fundamentals of Computation Theory. Lecture Notes in Computer Science, vol. 3623 (Springer, Berlin/New York, 2005), pp. 387–408. This is the preliminary version of [30]
J. Boyar, L. Epstein, L.M. Favrholdt, J.S. Kohrt, K.S. Larsen, M.M. Pedersen, S. Wøhlk, The maximum resource bin packing problem. Theor. Comput. Sci. 362, 127–139 (2006) \(\bullet \ \ maxpack\vert \mathit{on - line},\mathit{off - line}\vert R_{A}^{\infty }\vert s_{i} \leq 1/k.\)
J. Boyar, L. Epstein, A. Levin, Tight results for Next Fit and Worst Fit with resource augmentation. Theor. Comput. Sci. 411, 2572–2580 (2010) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\vert stretching.\)
D.J. Brown, A lower bound for on-line one-dimensional bin-packing algorithms. Technical report R-864, University of Illinois, Coordinated Science Laboratory, Urbana, IL, 1979 \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\mathit{bound}.\)
R.E. Burkard, G. Zhang, Bounded space on-line variable-sized bin packing. Acta Cybern. 13, 63–76 (1997) \(\bullet \ \ pack\vert \mathit{bounded - space}\vert R_{A}^{\infty }\vert \{B_{i}\}.\)
A. Caprara, U. Pferschy, Worst-case analysis of the subset sum algorithm for bin packing. Oper. Res. Lett. 32, 159–166 (2004) \(\bullet \ \ pack\vert \mathit{off - line}\vert R_{A}^{\infty }\mathit{bound}\vert s_{i} \leq 1/k.\)
W.-T. Chan, F.Y.L. Chin, D. Ye, G. Zhang, Y. Zhang, Online bin packing of fragile objects with application in cellular networks. JOCO 14(4), 427–435 (2007) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\vert controllable.\)
J.W. Chan, T. Lam, P.W.H. Wong, Dynamic bin packing of unit fractions items. Theor. Comput. Sci. 409, 521–529 (2008) \(\bullet \ \ pack\vert \mathit{on - line},dynamic\vert R_{A}^{\infty }\mathit{bounds}\vert discrete.\)
J.W. Chan, P.W.H. Wong, F.C.C. Yung, On dynamic bin packing: an improved lower bound and resource augmentation analysis. Algorithmica 53, 172–206 (2009) \(\bullet \ \ pack\vert \mathit{on - line},dynamic\vert R_{A}^{\infty }\mathit{bound}\vert discrete,stretching.\)
B. Chandra, Does randomization help in on-line bin packing? Inf. Process. Lett. 43, 15–19 (1992) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\mathit{bound}.\)
A.K. Chandra, D.S. Hirschler, C.K. Wong, Bin packing with geometric constraints in computer network design. Oper. Res. 26, 760–772 (1978) \(\bullet \ \ pack\vert \mathit{off - line}\vert R_{A}^{\infty }.\)
C. Chekuri, S. Khanna, A polynomial time approximation scheme for the multiple knapsack problem. SIAM J. Comput. 35, 713–728 (2005)
B. Chen, A. van Vliet, G.J. Woeginger, New lower and upper bounds for on-line scheduling. Oper. Res. Lett. 16, 221–230 (1994) \(\bullet \ \ mincap\vert \mathit{on - line}\vert R_{A}\mathit{bounds}.\)
E.G. Coffman Jr., An introduction to combinatorial models of dynamic storage allocation. SIAM Rev. 25, 311–325 (1983)
E.G. Coffman Jr., J. Csirik, Performance guarantees for one-dimensional bin packing, in Handbook of Approximation Algorithms and Metaheuristics, chapter 32, ed. by T. Gonzales (Taylor and Francis Books/CRC, Boca Raton, 2006), pp. 32–1–32–18
E.G. Coffman Jr., J. Csirik, A classification scheme for bin packing theory. Acta Cybern. 18, 47–60 (2007) \(\bullet \ \ pack\vert \mathit{on - line},\mathit{off - line}\vert R_{A}^{\infty },R_{A}.\)
E.G. Coffman Jr., J.Y.-T. Leung, Combinatorial analysis of an efficient algorithm for processor and storage allocation. SIAM J. Comput. 8, 202–217 (1979) \(\bullet \ \ maxcard(subset)\vert \mathit{off - line}\vert R_{A}\mathit{bound}.\)
E.G. Coffman Jr., G.S. Lueker, Probabilistic Analysis of Packing and Partitioning Algorithms (Wiley, New York, 1991)
E.G. Coffman Jr., M.R. Garey, D.S. Johnson, An application of bin-packing to multiprocessor scheduling. SIAM J. Comput. 7, 1–17 (1978) \(\bullet \ \ mincap\vert \mathit{off - line}\vert R_{A}\mathit{bound}.\)
E.G. Coffman Jr., J.Y.-T. Leung, D.W. Ting, Bin packing: maximizing the number of pieces packed. Acta Inform. 9, 263–271 (1978) \(\bullet \ \ maxcard(subset)\vert \mathit{off - line}\vert R_{A}.\)
E.G. Coffman Jr., M.R. Garey, D.S. Johnson, Dynamic bin packing. SIAM J. Comput. 12, 227–258 (1983) \(\bullet \ \ pack\vert dynamic,repack\vert R_{A}^{\infty }\mathit{bound}\vert s_{i} \leq 1/k.\)
E.G. Coffman Jr., M.R. Garey, D.S. Johnson, Approximation algorithms for bin-packing: An updated survey, in Algorithm Design for Computer System Design, ed. by G. Ausiello, M. Lucertini, P. Serafini (Springer, Wien, 1984), pp. 49–106
E.G. Coffman Jr., M.R. Garey, D.S. Johnson, Bin packing with divisible item sizes. J. Complex. 3, 405–428 (1987) \(\bullet \ \ pack,cover,maxcard(subset)\vert \mathit{on - line},\mathit{off - line},dynamic\vert \mathit{complexity}\vert \{B_{i}\},restricted.\)
E.G. Coffman Jr., M.R. Garey, D.S. Johnson, Approximation algorithms for bin packing: a survey, in Approximation Algorithms for NP-Hard Problems, ed. by D.S. Hochbaum (PWS Publishing Company, Boston, 1997), pp. 46–93
E.G. Coffman Jr., G. Galambos, S. Martello, D. Vigo, Bin packing approximation algorithms: Combinatorial analysis, in Handbook of Combinatorial Optimization, ed. by D.-Z. Du, P.M. Pardalos (Kluwer, Boston, 1999)
E.G. Coffman Jr., J. Csirik, J.Y.-T. Leung, Variable-sized bin packing and bin covering, in Handbook of Approximation Algorithms and Metaheuristics, chapter 34, ed. by T. Gonzales (Taylor and Francis Books/CRC, Boca Raton, 2006), pp. 34–1–34–11
E.G. Coffman Jr., J. Csirik, J.Y-T. Leung, Variants of classical one-dimensional bin packing, in Handbook of Approximation Algorithms and Metaheuristics, chapter 33, ed. by T. Gonzales (Taylor and Francis Books/CRC, Boca Raton, 2006), pp. 33–1–33–13
J. Csirik, An on-line algorithm for variable-sized bin packing. Acta Inform. 26, 697–709 (1989) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\vert \{B_{i}\}.\)
J. Csirik, The parametric behaviour of the first fit decreasing bin-packing algorithm. J. Algorithms 15, 1–28 (1993) \(\bullet \ \ pack\vert \mathit{off - line}\vert R_{A}^{\infty }\vert s_{i} \leq 1/k.\)
J. Csirik, B. Imreh, On the worst-case performance of the Next-k-Fit bin-packing heuristic. Acta Cybern. 9, 89–105 (1989) \(\bullet \ \ pack\vert \mathit{bounded - space}\vert R_{A}^{\infty }\mathit{bounds}.\)
J. Csirik, D.S. Johnson, Bounded space on-line bin-packing: best is better than first, in Proceedings of the 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, Philadelphia, 1991, pp. 309–319. This is the preliminary version of [60]
J. Csirik, D.S. Johnson, Bounded space on-line bin-packing: best is better than first. Algorithmica 31, 115–138 (2001) \(\bullet \ \ pack\vert \mathit{bounded - space}\vert R_{A}^{\infty }.\)
J. Csirik, V. Totik, On-line algorithms for a dual version of bin packing. Discret. Appl. Math. 21, 163–167 (1988) \(\bullet \ \ cover\vert \mathit{on - line}\vert R_{A}^{\infty }\mathit{bound}.\)
J. Csirik, G.J. Woeginger, Online packing and covering problems, in Online Algorithms: The State of the Art, ed. by A. Fiat, G.J. Woeginger. Lecture Notes in Computer Science, vol. 1442 (Springer, Berlin, 1998), pp. 154–177
J. Csirik, G.J. Woeginger, Resource augmentation for online bounded space bin packing. J. Algorithms 44, 308–320 (2002) \(\bullet \ \ pack\vert \mathit{bounded - space}\vert R_{A}^{\infty }\mathit{bound}\vert stretching.\)
J. Csirik, G. Galambos, G. Turan, Some results on bin-packing, in Proceedings of the EURO VI Conference, Vienna, Austria, 1983, pp. 52 \(\bullet \ \ pack\vert \mathit{on - line},\mathit{off - line}\vert R_{A}^{\infty }.\)
J. Csirik, D.S. Johnson, C. Kenyon, Better approximation algorithms for bin covering, in Proceedings of the Twelft Annual ACM-SIAM Symposium on Discrete Algorithms, Washington, DC, 2001, pp. 557–566 \(\bullet \ \ cover\vert \mathit{off - line}\vert PTAS.\)
M. Demange, P. Grisoni, V.T. Paschos, Differential approximation algorithms for some combinatorial optimization problems. Theor. Comput. Sci. 209, 107–122 (1998) \(\bullet \ \ pack\vert \mathit{off - line}.\)
M. Demange, J. Monnot, V.T. Paschos, Bridging gap between standard and differential polynomial approximation: the case of bin-packing. Appl. Math. Lett. 12, 127–133 (1999) \(\bullet \ \ pack\vert \mathit{off - line}\vert R_{A}^{\infty }.\)
G. Dósa, The tight bound of first fit decreasing bin-packing algorithm is \(FFD(I) \leq (11/9)\ {\it \text{OPT}}(I) + 6/9\), in Combinatorics, Algorithms, Probabilistic and Experimental Methodologiesed. by B. Chen, M. Paterson, G. Zhang. Lecture Notes in Computer Science, vol. 4614 (Springer, Berlin, 2007), pp. 1–11 \(\bullet \ \ pack\vert \mathit{off - line}\vert R_{A}^{\infty }.\)
G. Dósa, Y. He, Bin packing problems with rejection penalties and their dual problems. Inf. Comput. 204, 795–815 (2006) \(\bullet \ \ pack,cover\vert \mathit{on - line},\mathit{off - line}\vert R_{A}^{\infty },R_{A}\vert controllable.\)
L. Epstein, Bin packing with rejection revisited, in WAOA, Zurich, Switzerland. Lecture Notes in Computer Science, vol. 4368 (Springer, 2006), pp. 146–159. This is the preliminary version of [73]
L. Epstein, Online bin packing with cardinality constraints. SIAM J. Discret. Math. 20, 1015–1030 (2007) \(\bullet \ \ pack\vert \mathit{bounded - space}\vert R_{A}^{\infty }\vert \{B_{i}\},stretching,card(B) \leq k.\)
L. Epstein, On online bin packing with LIB constraints. Nav. Res. Logist. (NRL) 56, 780–786 (2009) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\vert s_{i} \leq 1/k,controllable.\)
L. Epstein, Bin packing with rejection revisited. Algorithmica 56, 505–528 (2010) \(\bullet \ \ pack\vert \mathit{off - line},\mathit{bounded - space}\vert R_{A}^{\infty }\mathit{bound},PTAS\vert controllable.\)
L. Epstein, L.M. Favrholdt, On-line maximizing the number of items packed in variable-sized bins. Acta Cybern. 16, 57–66 (2003) \(\bullet \ \ maxcard(subset)\vert \mathit{on - line},conservative\vert R_{A}\vert \{B_{i}\}.\)
L. Epstein, E. Kleiman, Resource augmented semi-online bounded space bin packing. Discret. Appl. Math. 157, 2785–2798 (2009) \(\bullet \ \ pack\vert \mathit{bounded - space},repack\vert R_{A}^{\infty }\vert stretching.\)
L. Epstein, E. Kleiman, Selfish bin packing. Algorithmica (2011). To appear (online first: doi:10.1007/s00453-009-9348-6) \(\bullet \ \ pack\vert repack\vert R_{A}^{\infty }\mathit{bounds}.\)
L. Epstein, A. Levin, More on online bin packing with two item sizes. Discret. Optim. 5(4), 705–713 (2008) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\vert restricted,s_{i} \leq 1/k.\)
L. Epstein, A. Levin, On bin packing with conflicts. SIAM J. Optim. 19, 1270–1298 (2008) \(\bullet \ \ pack\vert \mathit{on - line},\mathit{off - line}\vert R_{A}\vert mutex.\)
L. Epstein, R. van Stee, Multidimensional packing problems, in Handbook of Approximation Algorithms and Metaheuristics, chapter 35, ed. by T. Gonzales (Taylor and Francis Books/CRC, Boca Raton, 2006), pp. 35–1–35–15
L. Epstein, R. van Stee, Online bin packing with resource augmentation. Discret. Optim. 4, 322–333 (2007) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\mathit{bound}\vert stretching.\)
L. Epstein, R. van Stee, Approximation schemes for packing splittable items with cardinality constraints, in WAOA, Eilat, Israel. Lecture Notes in Computer Science, vol. 4927 (Springer, 2008), pp. 232–245 \(\bullet \ \ pack\vert \mathit{off - line}\vert PTAS\vert controllable.\)
L. Epstein, C. Imreh, A. Levin, Class constrained bin packing revisited. Theor. Comput. Sci. 411, 3073–3089 (2010) \(\bullet \ \ pack\vert \mathit{on - line},\mathit{off - line}\vert R_{A}^{\infty },FPTAS\vert restricted,card(B) \leq k\mathit{colors}.\)
U. Faigle, W. Kern, Gy. Turán, On the performance of on-line algorithms for partition problems. Acta Cybern. 9, 107–119 (1989) \(\bullet \ \ pack,mincap\vert \mathit{on - line}\vert R_{A}^{\infty }\mathit{bound}\vert restricted.\)
W. Fernandez de la Vega, G.S. Lueker, Bin packing can be solved within \(1+\epsilon\) in linear time. Combinatorica 1, 349–355 (1981) \(\bullet \ \ pack\vert \mathit{off - line}\vert PTAS.\)
L. Finlay, P. Manyem, Online LIB problems: heuristics for bin covering and lower bounds for bin packing. RAIRO Rech. Oper. 39, 163–183 (2005) \(\bullet \ \ pack,cover\vert \mathit{on - line}\vert R_{A}^{\infty }\vert controllable.\)
D.C. Fisher, Next-fit packs a list and its reverse into the same number of bins. Oper. Res. Lett. 7, 291–293 (1988) \(\bullet \ \ pack\vert \mathit{bounded - space}.\)
D.K. Friesen, Tighter bounds for the multifit processor scheduling algorithm. SIAM J. Comput. 13, 170–181 (1984) \(\bullet \ \ mincap\vert \mathit{off - line}\vert R_{A}^{\infty }\mathit{bound}.\)
D.K. Friesen, F.S. Kuhl, Analysis of a hybrid algorithm for packing unequal bins. SIAM J. Comput. 17, 23–40 (1988) \(\bullet \ \ maxcard(subset)\vert \mathit{off - line}\vert R_{A}\vert \{B_{i}\}.\)
D.K. Friesen, M.A. Langston, Variable sized bin packing. SIAM J. Comput. 15, 222–230 (1986) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\vert \{B_{i}\}.\)
D.K. Friesen, M.A. Langston, Analysis of a compound bin-packing algorithm. SIAM J. Discret. Math. 4, 61–79 (1991) \(\bullet \ \ pack\vert \mathit{off - line}\vert R_{A}^{\infty }\mathit{bound}.\)
G. Galambos, A new heuristic for the classical bin-packing problem. Technical report 82, Institute fuer Mathematik, Augsburg, 1985 \(\bullet \ \ pack\vert repack\vert R_{A}^{\infty }\mathit{bound}\vert s_{i} \leq 1/k.\)
G. Galambos, Parametric lower bound for on-line bin-packing. SIAM J. Algebra. Discret. Meth. 7, 362–367 (1986) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\mathit{bound}\vert s_{i} \leq 1/k.\)
G. Galambos, J.B.G. Frenk, A simple proof of Liang’s lower bound for on-line bin packing and the extension to the parametric case. Discret. Appl. Math. 41, 173–178 (1993) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\mathit{bound}\vert s_{i} \leq 1/k.\)
G. Galambos, G.J. Woeginger, An on-line scheduling heuristic with better worst case ratio than Graham’s list scheduling. SIAM J. Comput. 22, 345–355 (1993) \(\bullet \ \ mincap\vert \mathit{on - line}\vert R_{A}.\)
G. Galambos, G.J. Woeginger, Repacking helps in bounded space on-line bin-packing. Computing 49, 329–338 (1993) \(\bullet \ \ pack\vert \mathit{bounded - space},repack\vert R_{A}^{\infty }\mathit{bound}.\)
G. Galambos, G.J. Woeginger, On-line bin packing – a restricted survey. Z. Oper. Res. 42, 25–45 (1995)
G. Gambosi, A. Postiglione, M. Talamo, New algorithms for on-line bin packing, in Algorithms and Complexity, ed. by R. Petreschi, G. Ausiello, D.P. Bovet (World Scientific, Singapore, 1990), pp. 44–59. This is the preliminary version of [99]
G. Gambosi, A. Postiglione, M. Talamo, On-line maintenance of an approximate bin-packing solution. Nord. J. Comput. 4, 151–166 (1997) \(\bullet \ \ pack\vert repack\vert R_{A}^{\infty }.\)
G. Gambosi, A. Postiglione, M. Talamo, Algorithms for the relaxed online bin-packing model. SIAM J. Comput. 30, 1532–1551 (2000) \(\bullet \ \ pack\vert \mathit{on - line},repack\vert R_{A}^{\infty }.\)
M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (W.H. Freeman, New York, 1979)
M.R. Garey, D.S. Johnson, Approximation algorithm for bin-packing problems: a survey, in Analysis and Design of Algorithm in Combinatorial Optimization, ed. by G. Ausiello, M. Lucertini (Springer, New York, 1981), pp. 147–172
M.R. Garey, D.S. Johnson, A 71/60 theorem for bin packing. J. Complex. 1, 65–106 (1985) \(\bullet \ \ pack\vert \mathit{off - line}\vert R_{A}^{\infty }.\)
M.R. Garey, R.L. Graham, J.D. Ullmann, Worst-case analysis of memory allocation algorithms, in Proceedings of the 4th Annual ACM Symposium Theory of Computing, Denver, CO (ACM, New York, 1972), pp. 143–150
M.R. Garey, R.L. Graham, D.S. Johnson, A.C.-C. Yao, Resource constrained scheduling as generalized bin packing. J. Comb. Theory Ser. A 21, 257–298 (1976) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\mathit{bound}\vert s_{i} \leq 1/k,controllable.\)
P.C. Gilmore, R.E. Gomory, A linear programming approach to the cutting-stock problem. Oper. Res. 9, 849–859 (1961)
P.C. Gilmore, R.E. Gomory, A linear programming approach to the cutting stock problem – (Part II). Oper. Res. 11, 863–888 (1963)
S.W. Golomb, On certain nonlinear recurring sequences. Am. Math. Mon. 70, 403–405 (1963)
R.L. Graham, Bounds for certain multiprocessing anomalies. Bell Syst. Tech. J. 45, 1563–1581 (1966)
R.L. Graham, Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math. 17, 263–269 (1969) \(\bullet \ \ mincap\vert \mathit{on - line},\mathit{off - line}\vert R_{A}.\)
R.L. Graham, Bounds on multiprocessing anomalies and related packing algorithms, in Proceedings of 1972 Spring Joint Computer Conference (AFIPS Press, Montvale, 1972), pp. 205–217 \(\bullet \ \ pack,mincap\vert \mathit{on - line},\mathit{off - line}\vert R_{A}\mathit{bound}.\)
E.F. Grove, Online bin packing with lookahead, in Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, San Francisco, CA (SIAM, 1995), pp. 430–436 \(\bullet \ \ pack\vert \mathit{on - line},repack\vert R_{A}^{\infty }\mathit{bound}.\)
G. Gutin, T.R. Jensen, A. Yeo, Batched bin packing. Discret. Optim. 2, 71–82 (2005) \(\bullet \ \ pack\vert \mathit{on - line},repack\vert R_{A}^{\infty }.\)
G. Gutin, T.R. Jensen, A. Yeo, On-line bin packing with two item sizes. Algorithm. Oper. Res. 1, 72–78 (2006) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}\vert restricted.\)
L.A. Hall, Approximation algorithms for scheduling, in Approximation Algorithms for NP-Hard Problems, ed. by D.S. Hochbaum (PWS Publishing Company, Boston, 1997), pp. 1–45
D.S. Hochbaum (ed.), Approximation Algorithms for NP-Hard Problems (PWS Publishing Company, Boston, 1997)
D.S. Hochbaum, Various notions of approximation: good, better, best, and more, in Approximation Algorithms for NP-Hard Problems, ed. by D.S. Hochbaum (PWS Publishing Company, Boston, 1997), pp. 389–391
D.S. Hochbaum, D.B. Shmoys, A packing problem you can almost solve by sitting on your suitcase. SIAM J. Algebra. Discret. Methods 7, 247–257 (1986) \(\bullet \ \ pack\vert \mathit{off - line}\vert \mathit{complexity}\vert restricted.\)
D.S Hochbaum, D.B. Shmoys, Using dual approximation algorithms for scheduling problems: theoretical and practical results. J. ACM 34, 144–162 (1987) \(\bullet \ \ mincap\vert \mathit{off - line}\vert R_{A}.\)
M. Hofri, Analysis of Algorithms (Oxford University Press, New York, 1995)
Z. Ivković, E. Lloyd, Fully dynamic algorithms for bin packing: being myopic helps, in Proceedings of the 1st European Symposium on Algorithms. Lecture Notes in Computer Science, vol. 726 (Springer, New York, 1993), pp. 224–235. This is the preliminary version of [122]
Z. Ivković, E. Lloyd, Partially dynamic bin packing can be solved within \(1+\epsilon\) in (amortized) polylogarithmic time. Inf. Process. Lett. 63, 45–50 (1997) \(\bullet \ \ pack\vert dynamic\vert PTAS.\)
Z. Ivković, E. Lloyd, Fully dynamic algorithms for bin packing: being (mostly) myopic helps. SIAM J. Comput. 28, 574–611 (1998) \(\bullet \ \ pack\vert dynamic,repack\vert R_{A}^{\infty }.\)
K. Jansen, S. Öhring, Approximation algorithms for time constrained scheduling. Inf. Comput. 132, 85–108 (1997) \(\bullet \ \ pack\vert \mathit{off - line}\vert R_{A}\mathit{bound}\vert mutex.\)
K. Jansen, R. Solis-Oba, An asymptotic fully polynomial time approximation scheme for bin covering. Theor. Comput. Sci. 306, 543–551 (2003) \(\bullet \ \ cover\vert \mathit{off - line}\vert FPTAS.\)
D.S. Johnson, Fast allocation algorithms, in Proceedings of the 13th IEEE Symposium on Switching and Automata Theory, New York, 1972, pp. 144–154
D.S. Johnson, Near-Optimal Bin Packing Algorithms. PhD thesis, MIT, Cambridge, MA, 1973
D.S. Johnson, Fast algorithms for bin packing. J. Comput. Syst. Sci. 8, 272–314 (1974) \(\bullet \ \ pack\vert \mathit{on - line},\mathit{off - line}\vert R_{A}^{\infty }\vert s_{i} \leq 1/k.\)
D.S. Johnson, The NP-completeness column: an ongoing guide. J. Algorithms 3, 89–99 (1982)
D.S. Johnson, A. Demers, J.D. Ullman, M.R. Garey, R.L. Graham, Worst-case performance bounds for simple one-dimensional packing algorithms. SIAM J. Comput. 3, 256–278 (1974) \(\bullet \ \ pack\vert \mathit{on - line},\mathit{off - line}\vert R_{A}^{\infty },R_{A}\vert s_{i} \leq 1/k.\)
J. Kang, S. Park, Algorithms for the variable sized bin packing problem. Eur. J. Oper. Res. 147, 365–372 (2003) \(\bullet \ \ pack\vert \mathit{off - line}\vert R_{A}^{\infty }\vert \{B_{i}\}.\)
D.R. Karger, S.J. Phillips, E. Torng, A better algorithm for an ancient scheduling problem. J. Algorithms 20, 400–430 (1996) \(\bullet \ \ mincap\vert \mathit{on - line}\vert R_{A}.\)
N. Karmarkar, R.M. Karp, An efficient approximation scheme for the one-dimensional bin-packing problem, in Proceedings of the 23rd Annual IEEE Symposium on Foundations Computer Science, Chicago, IL, 1982, pp. 312–320 \(\bullet \ \ pack\vert \mathit{off - line}\vert FPTAS.\)
G.Y. Katona, Edge disjoint polyp packing. Discret. Appl. Math. 78, 133–152 (1997) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\mathit{bounds}.\)
H. Kellerer, A polynomial time approximation scheme for the multiple knapsack problem, in RANDOM-APPROX, Berkeley, CA. Lecture Notes in Computer Science, vol. 1671 (Springer, 1999), pp. 51–62
H. Kellerer, U. Pferschy, Cardinality constrained bin-packing problems. Ann. Oper. Res. 92, 335–348 (1999) \(\bullet \ \ pack\vert \mathit{off - line}\vert R_{A}^{\infty }\vert card(B) \leq k.\)
C. Kenyon, Best-fit bin-packing with random order, in Proceedings of the 7th Annual ACM-SIAM Symposium on Discrete Algorithms Atlanta, GA (ACM/SIAM, Philadelphia, 1996), pp. 359–364 \(\bullet \ \ pack\vert \mathit{on - line}.\)
K.A. Kierstead, W.T. Trotter, An extremal problem in recursive combinatorics. Congr. Numer. 33, 143–153 (1981)
N.G. Kinnersley, M.A. Langston, Online variable-sized bin packing. Discret. Appl. Math. 22, 143–148 (1988–1989) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\vert \{B_{i}\}.\)
K.L. Krause, Y.Y. Shen, H.D. Schwetman, Analysis of several task-scheduling algorithms for a model of multiprogramming computer systems. J. ACM 22, 522–550 (1975) \(\bullet \ \ pack\vert \mathit{on - line},\mathit{off - line}\vert R_{A}^{\infty }\mathit{bound}\vert card(B) \leq k.\)
M.A. Langston, Improved 0/1 interchanged scheduling. BIT 22, 282–290 (1982) \(\bullet \ \ maxcard(subset)\vert \mathit{off - line}\vert R_{A}^{\infty }\vert \{B_{i}\}.\)
E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, D.B. Shmoys, Sequencing and scheduling: algorithms and complexity, in Logistics of Production and Inventory, ed. by S.C. Graves, A.H.G. Rinnooy Kan, P.H. Zipkin. Handbooks in Operations Research and Management Science, vol. 4 (North-Holland, Amsterdam, 1993), pp. 445–522
C.C. Lee, D.T. Lee, A new algorithm for on-line bin-packing. Technical report 83-03-FC-02, Department of Electrical Engineering and computer Science Northwestern University, Evanston, IL, 1983
C.C. Lee, D.T. Lee, A simple on-line bin-packing algorithm. J. ACM 32, 562–572 (1985) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\mathit{bound}.\)
H.W. Lenstra Jr., Integer programming with a fixed number of variables. Math. Oper. Res. 8, 538–548 (1983)
J.Y.-T. Leung, M. Dror, G.H. Young, A note on an open-end bin packing problem. J. Sched. 4, 201–207 (2001) \(\bullet \ \ pack\vert \mathit{on - line},\mathit{off - line},\mathit{open - end}\vert R_{A}^{\infty }\mathit{bound};FPTAS.\)
R. Li, M. Yue, The proof of \(FFD(L) \leq 11/9\ {\it \text{OPT}}(L) + 7/9.\) Chin. Sci. Bull. 42, 1262–1265 (1997) \(\bullet \ \ pack\vert \mathit{off - line}\vert R_{A}^{\infty }.\)
F.M. Liang, A lower bound for on-line bin packing. Inf. Process. Lett. 10, 76–79 (1980) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\mathit{bound}.\)
W.-P. Liu, J.B. Sidney, Bin packing using semi-ordinal data. Oper. Res. Lett. 19, 101–104 (1996) \(\bullet \ \ pack\vert \mathit{off - line}\vert R_{A}^{\infty }.\)
L. Lovász, M. Saks, W.T. Trotter, An on-line graph-coloring algorithm with sublinear performance ratio. Discret. Math. 75, 319–325 (1989)
C.A. Mandal, P.P. Chakrabarti, S. Ghose, Complexity of fragmentable object bin packing and an application. Comput. Math. Appl. 35, 91–97 (1998) \(\bullet \ \ pack\vert \mathit{off - line}\vert \mathit{running - time}\vert controllable.\)
R.L. Manyem, P. Salt, M.S. Visser, Approximation lower bounds in online lib bin packing and covering. J. Autom. Lang. Comb. 8, 663–674 (2003) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\mathit{bound}\vert controllable.\)
W. Mao, Best-k-fit bin packing. Computing 50, 265–270 (1993) \(\bullet \ \ pack\vert \mathit{bounded - space}\vert R_{A}^{\infty }.\)
W. Mao, Tight worst-case performance bounds for next-k-fit bin packing. SIAM J. Comput. 22, 46–56 (1993) \(\bullet \ \ pack\vert \mathit{bounded - space}\vert R_{A}^{\infty }.\)
C.U. Martel, A linear time bin-packing algorithm. Oper. Res. Lett. 4, 189–192 (1985) \(\bullet \ \ pack\vert \mathit{off - line},\mathit{linear - time}\vert R_{A}^{\infty }.\)
N. Menakerman, R. Rom, Bin packing with item fragmentation, in WADS, Providence, RI. Lecture Notes in Computer Science, vol. 2125 (Springer, 2001), pp. 313–324 \(\bullet \ \ pack\vert \mathit{on - line},\mathit{off - line}\vert R_{A}\vert controllable.\)
F.D. Murgolo, Anomalous behaviour in bin packing algorithms. Discrte. Appl. Math. 21, 229–243 (1988) \(\bullet \ \ pack\vert \mathit{on - line},\mathit{off - line},conservative.\)
F.D. Murgolo, An efficient approximation scheme for variable-sized bin packing. SIAM J. Comput. 16, 149–161 (1988) \(\bullet \ \ pack\vert \mathit{off - line}\vert FPTAS\vert \{B_{i}\}.\)
N. Naaman, R. Rom, Packet scheduling with fragmentation, in INFOCOM 2002, New York, NY (IEEE, 2002) \(\bullet \ \ pack\vert \mathit{on - line},\mathit{off - line}\vert R_{A}\vert controllable.\)
P. Ramanan, D.J. Brown, C.C. Lee, D.T. Lee, On-line bin packing in linear time. J. Algorithms 10, 305–326 (1989) \(\bullet \ \ pack\vert \mathit{on - line},\mathit{linear - time}\vert R_{A}^{\infty }\mathit{bound}.\)
M.B. Richey, Improved bounds for harmonic-based bin packing algorithms. Discret. Appl. Math. 34, 203–227 (1991) \(\bullet \ \ pack\vert \mathit{on - line},\mathit{linear - time}\vert R_{A}^{\infty }\mathit{bound}.\)
S. Sahni, Algorithms for scheduling independent tasks. J. ACM 23, 116–127 (1976)
S.S. Seiden, An optimal online algorithm for bounded space variable-sized bin packing. SIAM J. Discret. Math. 14, 458–470 (2001) \(\bullet \ \ pack\vert \mathit{on - line},\mathit{bounded - space}\vert R_{A}^{\infty }\mathit{bound}\vert \{B_{i}\}.\)
S.S. Seiden, On the online bin packing problem. J. ACM 49, 640–671 (2002) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\mathit{bound}.\)
S.S. Seiden, R. van Stee, L. Epstein, New bounds for variable-sized online bin packing. SIAM J. Comput. 33, 455–469 (2003) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\mathit{bound}\vert \{B_{i}\}.\)
H. Shachnai, T. Tamir, Polynomial time approximation schemes for class-constrained packing problems. J. Sched. 4, 313–338 (2001) \(\bullet \ \ pack\vert \mathit{off - line}\vert PTAS\vert card(B) \leq k\mathit{colors}.\)
H. Shachnai, T. Tamir, Tight bounds for online class-constrained packing. Theor. Comput. Sci. 321, 103–123 (2004) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}\vert card(B) \leq k\mathit{colors}.\)
H. Shachnai, O. Yehezkely, Fast asymptotic FPTAS for packing fragmentable items with costs, in FCT, Budapest, Hungary. Lecture Notes in Computer Science, vol. 4639 (Springer, 2007), pp. 482–493 \(\bullet \ \ pack\vert \mathit{off - line}\vert FPTAS\vert controllable.\)
H. Shachnai, T. Tamir, O. Yehezkely, Approximation schemes for packing with item fragmentation. Theory Comput. Syst. 43, 81–98 (2008) \(\bullet \ \ pack\vert \mathit{off - line}\vert PTAS\vert controllable.\)
D. Simchi-Levi, New worst-case results for the bin packing problem. Nav. Res. Logist. Q. 41, 579–585 (1994) \(\bullet \ \ pack\vert \mathit{on - line},\mathit{off - line}\vert R_{A}\mathit{bound}.\)
J. Sylvester, On a point in the theory of vulgar fractions. Am. J. Math. 3, 332–335 (1880)
A. van Vliet, An improved lower bound for on-line bin packing algorithms. Inf. Process. Lett. 43, 277–284 (1992) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\mathit{bound}\vert s_{i} \leq 1/k.\)
A. van Vliet, Lower and Upper Bounds for On-Line Bin Packing and Scheduling Heuristic. PhD thesis, Erasmus University, Rotterdam, 1995
A. van Vliet, On the asymptotic worst case behavoir of harmonic fit. J. Algorithms 20, 113–136 (1996) \(\bullet \ \ pack\vert \mathit{on - line},\mathit{bounded - space}\vert R_{A}^{\infty }\mathit{bound}\vert s_{i} \leq 1/k.\)
T.S. Wee, M.J. Magazine, Assembly line balancing as generalized bin packing. Oper. Res. Lett. 1, 56–58 (1982) \(\bullet \ \ pack\vert \mathit{off - line}\vert R_{A}^{\infty }.\)
G.J. Woeginger, Improved space for bounded-space, on-line bin-packing. SIAM J. Discret. Math. 6, 575–581 (1993) \(\bullet \ \ pack\vert \mathit{on - line},\mathit{bounded - space}\vert R_{A}^{\infty }.\)
E.C. Xavier, F.K. Miyazawa, The class constrained bin packing problem with applications to video-on-demand. Theor. Comput. Sci. 393, 240–259 (2008) \(\bullet \ \ pack\vert \mathit{on - line},\mathit{off - line}\vert R_{A}^{\infty },PTAS\vert card(B) \leq k.\)
J. Xie, Z. Liu, New worst-case bound of first-fit heuristic for bin packing problem, Unpublished manuscript. \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}\mathit{bound}.\)
K. Xu, A Bin-Packing Problem with Item Sizes in the Interval \((0,\alpha ]\) for \(\alpha \leq \frac{1} {2}.\) PhD thesis, Chinese Academy of Sciences, Institute of Applied Mathematics, Beijing, China, 1993
K. Xu, The asymptotic worst-case behavior of the FFD heuristics for small items. J. Algorithms 37, 237–246 (2000) \(\bullet \ \ pack\vert \mathit{off - line}\vert R_{A}^{\infty }\vert s_{i} \leq 1/k.\)
A.C.-C. Yao, New algorithms for bin packing. J. ACM 27, 207–227 (1980) \(\bullet \ \ pack\vert \mathit{on - line},\mathit{off - line}\vert R_{A}^{\infty }.\)
G. Yu, G. Zhang, Bin packing of selfish items, in WINE 2008, Shanghai, China. Lecture Notes in Computer Science, vol. 5385 (Springer, 2008) \(\bullet \ \ pack\vert repack\vert R_{A}^{\infty }\mathit{bounds}.\)
M. Yue, On the exact upper bound for the multifit processor scheduling algorithm. Ann. Oper. Res. 24, 233–259 (1991) \(\bullet \ \ mincap\vert \mathit{off - line}\vert R_{A}.\)
M. Yue, A simple proof of the inequality \(FFD(L) \leq \frac{11} {9} {\it \text{OPT}}(L) + 1\forall L\) for the FFD bin packing algorithm. Acta Math. Appl. Sin. 7, 321–331 (1991) \(\bullet \ \ pack\vert \mathit{off - line}\vert R_{A}^{\infty }.\)
G. Zhang, Tight worst-case performance bound for \(AFB_{k}\) bin packing. Technical report 15, Institute of Applied Mathematics. Academia Sinica, Beijng, China, 1994. This is the preliminary version of [187]
G. Zhang, Worst-case analysis of the FFH algorithm for on-line variable-sized bin paking. Computing 56, 165–172 (1996) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\vert \{B_{i}\}.\)
G. Zhang, A new version of on-line variable-sized bin packing. Discret. Appl. Math. 72, 193–197 (1997) \(\bullet \ \ pack\vert \mathit{on - line},\mathit{off - line}\vert R_{A}^{\infty }\vert \{B_{i}\}.\)
G. Zhang, M. Yue, Tight performance bound for \(AFB_{k}\) bin packing. Acta Math. Appl. Sin. Engl. Ser. 13, 443–446 (1997) \(\bullet \ \ pack\vert \mathit{bounded - space}\vert R_{A}^{\infty }.\)
G. Zhang, X. Cai, C.K. Wong, Linear time-approximation algorithms for bin packing. Oper. Res. Lett. 26, 217–222 (2000) \(\bullet \ \ pack\vert \mathit{on - line},\mathit{off - line}\vert R_{A}.\)
Acknowledgements
The second author was supported by Project “TÁMOP-4.2.1/B-09/1/KONV-2010-0005 - Creating the Center of Excellence at the University of Szeged,” supported by the European Union and cofinanced by the European Regional Development Fund.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer Science+Business Media New York
About this entry
Cite this entry
Coffman Jr., E.G., Csirik, J., Galambos, G., Martello, S., Vigo, D. (2013). Bin Packing Approximation Algorithms: Survey and Classification. In: Pardalos, P., Du, DZ., Graham, R. (eds) Handbook of Combinatorial Optimization. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7997-1_35
Download citation
DOI: https://doi.org/10.1007/978-1-4419-7997-1_35
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4419-7996-4
Online ISBN: 978-1-4419-7997-1
eBook Packages: Mathematics and StatisticsReference Module Computer Science and Engineering