Advertisement

A Unified Approach for Domination Problems on Different Network Topologies

Reference work entry

Abstract

This chapter studies approximability and inapproximability for a class of important domination problems in different network topologies. In addition to the well-known connected dominating set, total dominating set, more general forms of the problems, in which each node is required to be dominated by more than one of its neighbors, are also considered. An example is the positive influence dominating set (PIDS) problem, originated from the context of influence propagation in social networks. The PIDS problem seeks for a minimal set of nodes P such that all other nodes in the network have at least a fraction \(\rho>0\) of their neighbors in P. Furthermore, domination problems can be hybridized to form new problems such as T-PIDS and C-PIDS, the total version and the connected version of PIDS. The goal of the chapter is to narrow the gaps between the approximability and inapproximability of those domination problems. Going beyond the classic \(O(\log n)\) results, the chapter presents the explicit constants in the approximation factors to obtain tighter approximation bounds. While the first part of the chapter focuses on the general topology, the second part presents improved approximation results in different network topologies including power-law networks, social networks, and treelike networks.

Keywords

Approximation Algorithm Seeding Size Hardness Result Polynomial Time Approximation Scheme Random String 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs. Monographs and Textbooks in Pure and Applied Mathematics (Marcel Dekker, New York, 1998)MATHGoogle Scholar
  2. 2.
    S. Ivan, Dominating set based bluetooth scatternet formation with localized maintenance. Parallel and Distributed Processing Symposium, International (IEEE Computer Society, Washington, DC, 2002)Google Scholar
  3. 3.
    T. Moscibroda, R. Wattenhofer, Maximizing the lifetime of dominating sets, in IEEE International Parallel and Distributed Processing Symposium ’05, IPDPS ’05, Washington, DC, USA (IEEE Computer Society, Washington, DC, 2005)Google Scholar
  4. 4.
    J. Blum, M. Ding, A. Thaeler, X. Cheng, Connected dominating set in sensor networks and manets, in Handbook of Combinatorial Optimization, ed. by D.-Z. Du, P.M. Pardalos (Springer, New York, 2005), pp. 329–369CrossRefGoogle Scholar
  5. 5.
    M.T. Thai, F. Wang, D. Liu, S. Zhu, D.-Z. Du, Connected dominating sets in wireless networks with different transmission ranges. IEEE Trans. Mob. Comput. 6(7), 721–730 (2007)CrossRefGoogle Scholar
  6. 6.
    M.T. Thai, R. Tiwari, D.-Z. Du, On construction of virtual backbone in wireless ad hoc networks with unidirectional links. IEEE Trans. Mob. Comput. 7(9), 1098–1109 (2008)CrossRefGoogle Scholar
  7. 7.
    R. Tiwari, T.N. Dinh, M.T. Thai, On approximation algorithms for interference-aware broadcast scheduling in 2d and 3d wireless sensor networks, in International Conference on Wireless Algorithms, Systems, and Applications ’09, WASA ’09 (Springer, Berlin/Heidelberg, 2009)Google Scholar
  8. 8.
    R. Tiwari, T.N. Dinh, M.T. Thai, On centralized and localized approximation algorithms for interference-aware broadcast scheduling. IEEE Trans. Mob. Comput. 12(2), 233–247 (2013)CrossRefGoogle Scholar
  9. 9.
    F. Wang, M.T. Thai, D.-Z. Du, On the construction of 2-connected virtual backbone in wireless networks. IEEE Trans. Wirel. Commun. 8(3), 1230–1237 (2009)CrossRefGoogle Scholar
  10. 10.
    F. Wang, E. Camacho, K. Xu, Positive influence dominating set in online social networks, in Proceedings of the 3rd International Conference on Combinatorial Optimization and Applications, COCOA ’09 (Springer, Berlin, Heidelberg, 2009), pp. 313–321Google Scholar
  11. 11.
    X. Zhu, J. Yu, W. Lee, D. Kim, S. Shan, D.-Z. Du, New dominating sets in social networks. J. Global Optim. 48, 633–642 (2010). doi:10.1007/s10898-009-9511-2.MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    F. Wang, H. Du, E. Camacho, K. Xu, W. Lee, Y. Shi, S. Shan, On positive influence dominating sets in social networks. Theor. Comput. Sci. 412(3), 265–269 (2011). Combinatorial Optimization and Applications – COCOA 2009MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    U. Feige, A threshold of ln n for approximating set cover. J. ACM 45(4), 634–652 (1998)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    P. Slavík, A tight analysis of the greedy algorithm for set cover, in Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, STOC ’96 (ACM, New York, 1996), pp. 435–441Google Scholar
  15. 15.
    N. Alon, D. Moshkovitz, S. Safra, Algorithmic construction of sets for k-restrictions. ACM Trans. Algorithms 2(2), 153–177 (2006)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Z. Feng, Z. Zhao, W. Weili, Latency-bounded minimum influential node selection in social networks, in Wireless Algorithms, Systems, and Applications, ed. by B. Liu, A. Bestavros, D.-Z. Du, J. Wang. Lecture Notes in Computer Science (Springer, Berlin/New York, 2009), pp. 519–526Google Scholar
  17. 17.
    S. Guha, S. Khuller, Approximation algorithms for connected dominating sets. Algorithmica 20, 374–387 (1998)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    V.V. Vazirani, Approximation algorithms (Springer, Berlin/New York, 2001)Google Scholar
  19. 19.
    C. Liao, G.J. Chang, Algorithmic aspect of k-tuple domination in graphs. Taiwan. J. Math. 6, 415–420 (2003)MathSciNetGoogle Scholar
  20. 20.
    R. Klasing, C. Laforest, Hardness results and approximation algorithms of k-tuple domination in graphs. Inf. Process. Lett. 89, 75–83 (2004)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    B. Wang, K.-N. Xiang, On k-tuple domination of random graphs. Appl. Math. Lett. 22(10), 1513–1517 (2009)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    W. Shang, P. Wan, F. Yao, X. Hu, Algorithms for minimum m-connected k-tuple dominating set problem. Theor. Comput. Sci. 381(1–3), 241–247 (2007)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    K.G. Hill, J.D. Hawkins, R.F. Catalano, R.D. Abbott, J. Guo, Family influences on the risk of daily smoking initiation. J. Adolesc. Health 37(3), 202–210 (2005)CrossRefGoogle Scholar
  24. 24.
    J.B. Standridge, R.G. Zylstra, S.M. Adams, Alcohol consumption: an overview of benefits and risks. South. Med. J. 97(7), 664–672 (2004)CrossRefGoogle Scholar
  25. 25.
    P. Domingos, M. Richardson, Mining the network value of customers, in KDD ’01: Proceedings of The 7th ACM SIGKDD International Conference on Knowledge Discovery and Datamining (ACM, New York, 2001), pp. 57–66Google Scholar
  26. 26.
    D. Kempe, J. Kleinberg, É. Tardos, Maximizing the spread of influence through a social network, in KDD’03: Proceedings of the 9th ACM SIGKDD international conference on Knowledge discovery and data mining (ACM, New York, 2003), pp. 137–146Google Scholar
  27. 27.
    D. Kempe, J. Kleinberg, E. Tardos, Influential nodes in a diffusion model for social networks, in International Colloquium on Automata, Languages and Programming ’05 (Springer, Berlin/Heidelberg, 2005), pp. 1127–1138Google Scholar
  28. 28.
    J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, N. Glance, Cost-effective outbreak detection in networks, in ACM SIGKDD Conference on Knowledge Discovery and Data Mining ’07 (ACM, New York, 2007), pp. 420–429Google Scholar
  29. 29.
    T.N. Dinh, N.T. Dung, M.T. Thai, Cheap, easy, and massively effective viral marketing in social networks: Truth or fiction? in Proceedings of the 23rd ACM conference on Hypertext and Social Media, HT ’12 (ACM, Milwaukee, 2012)Google Scholar
  30. 30.
    D. Peleg, Local majority voting, small coalitions and controlling monopolies in graphs: A review, in SIROCCO’96: Colloquium on Structural Information and Communication Complexity, Weizmann Science Press of Israe, Jerusalem, Israel, (1996), pp. 152–169Google Scholar
  31. 31.
    W. Zhang, Z. Zhang, W. Wang, F. Zou, W. Lee, Polynomial time approximation scheme for t-latency bounded information propagation problem inwirelessnetworks. J. Comb. Optim., 1–11 (2010). doi:10.1007/s10878-010-9359-x.Google Scholar
  32. 32.
    S. Khot, O. Regev, Vertex cover might be hard to approximate to within 2-[epsilon]. J. Comput. Syst. Sci., 74(3), 335–349 (2008)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    M. Chlebík, J. Chlebíková, Approximation hardness of dominating set problems in bounded degree graphs. Inf. Comput. 206(11), 1264–1275 (2008)CrossRefMATHGoogle Scholar
  34. 34.
    L. Trevisan, Non-approximability results for optimization problems on bounded degree instances, in ACM Symposium on Theory of Computing ’01 (ACM, New York, 2001), pp. 453–461Google Scholar
  35. 35.
    N. Kahale, Eigenvalues and expansion of regular graphs. J. ACM, 42, 1091–1106 (1995)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    S. Rajagopalan, V.V. Vazirani, Primal-dual rnc approximation algorithms for (multi)-set (multi)-cover and covering integer programs, in Annual IEEE Symposium on Foundations of Computer Science ’93 (IEEE Computer Society, Washington, DC, 1993), pp. 322–331Google Scholar
  37. 37.
    E.B. van Peter, R. Kaas, E. Zijlstra, Design and implementation of an efficient priority queue. Math. Syst. Theory 10, 99–127 (1977)CrossRefGoogle Scholar
  38. 38.
    G. Robins, A. Zelikovsky, Tighter bounds for graph steiner tree approximation. SIAM J. Discret. Math. 19, 122–134 (2005)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    L. Ruan, H. Du, X. Jia, W. Wu, Y. Li, K. Ko, A greedy approximation for minimum connected dominating sets. Theor. Comput. Sci. 329, 325–330 (2004)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    D.-Z. Du, R.L. Graham, P.M. Pardalos, P.-J. Wan, W. Wu, W. Zhao, Analysis of greedy approximations with nonsubmodular potential functions, in Proceedings of the nineteenth annual ACM-SIAM symposium on Discrete algorithms, SODA ’08 (Society for Industrial and Applied Mathematics, Philadelphia, 2008), pp. 167–175Google Scholar
  41. 41.
    B.S. Baker, Approximation algorithms for np-complete problems on planar graphs. J. ACM 41, 153–180 (1994)CrossRefMATHGoogle Scholar
  42. 42.
    S. Khanna, R. Motwani, Towards a syntactic characterization of ptas, in Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, STOC ’96 (ACM, New York, 1996), pp. 329–337Google Scholar
  43. 43.
    D. Eppstein, Diameter and treewidth in minor-closed graph families. Algorithmica 27(3), 275–291 (2000)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    M. Grohe, Local tree-width, excluded minors, and approximation algorithms. Combinatorica 23, 613–632 (2003)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    E.D. Demaine, M. Hajiaghayi, Bidimensionality: new connections between fpt algorithms and ptass, in Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms, SODA ’05 (Society for Industrial and Applied Mathematics, Philadelphia, 2005), pp. 590–601Google Scholar
  46. 46.
    M. Gibson, I. Pirwani, Algorithms for dominating set in disk graphs: Breaking the log n barrier, in European Symposia on Algorithms 2010, ed. by M. de Berg, U. Meyer. Volume 6346 of Lecture Notes in Computer Science (Springer, Berlin/Heidelberg, 2010), pp. 243–254CrossRefGoogle Scholar
  47. 47.
    A. Czygrinow, M. Hanckowiak, W. Wawrzyniak, Fast distributed approximations in planar graphs, in Distributed Computing, ed. by G. Taubenfeld. Volume 5218 of Lecture Notes in Computer Science (Springer, Berlin/Heidelberg, 2008), pp. 78–92CrossRefGoogle Scholar
  48. 48.
    D. Dai, C. Yu, A 5+[epsilon]-approximation algorithm for minimum weighted dominating set in unit disk graph. Theor. Comput. Sci. 410(8–10), 756–765 (2009)MathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    M. Girvan, M.E. Newman, Community structure in social and biological networks. PNAS 99(12), 7821–7826 (2002)MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    C. Gkantsidis, M. Mihail, A. Saberi, Conductance and congestion in power law graphs, in SIGMETRICS ’03: Proceedings of the International Conference on Measurements and Modeling of Computer Systems (ACM, New York, 2003), pp. 148–159Google Scholar
  51. 51.
    A. Ferrante, G. Pandurangan, K. Park, On the hardness of optimization in power-law graphs. Theor. Comput. Sci. 393(1–3), 220–230 (2008)MathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    W. Aiello, F. Chung, L. Lu, A random graph model for power law graphs. Exp. Math. 10, 53–66 (2000)MathSciNetCrossRefGoogle Scholar
  53. 53.
    Y. Shen, D.T. Nguyen, Y. Xuan, M.T. Thai, New techniques for approximating optimal substructure problems in power-law graphs. Theor. Comput. Sci. (2011)Google Scholar
  54. 54.
    A. Barabasi, H. Jeong, Z. Neda, E. Ravasz, A. Schubert, T. Vicsek, Evolution of the social network of scientific collaborations. Phys. A 311(3–4), 590–614 (2002)MathSciNetCrossRefMATHGoogle Scholar
  55. 55.
    B. Viswanath, A. Mislove, M. Cha, K.P. Gummadi, On the evolution of user interaction in facebook, in WOSN’09 (ACM, New York, 2009)Google Scholar
  56. 56.
    A. Mislove, M. Marcon, K.P. Gummadi, P. Druschel, B. Bhattacharjee, Measurement and analysis of online social networks, in IMC’07, San Diego, CA (ACM, New York, 2007)Google Scholar
  57. 57.
    A. Srinivasan, Improved approximations of packing and covering problems, in Proceedings of the twenty-seventh annual ACM symposium on Theory of computing, STOC ’95 (ACM, New York, 1995), pp. 268–276Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Computer Science, Information Science and EngineeringUniversity of FloridaGainesvilleFL, USA
  2. 2.Department of Computer & Information Science & EngineeringUniversity of FloridaGainesvilleFL, USA
  3. 3.Department of Computer Science, Information Science and EngineeringUniversity of FloridaGainesvilleFL, USA

Personalised recommendations