Advertisement

Photocatalytic Water Splitting and Carbon Dioxide Reduction

  • Jacob D. Graham
  • Nathan I. Hammer

Abstract

Photocatalytic water splitting, which involves the simultaneous reduction and oxidation of water producing hydrogen and oxygen gas, provides a means of harnessing the sun’s power to generate an energy source in a clean and renewable fashion. Photocatalytic reduction of carbon dioxide to form hydrocarbons such as methane not only promises reduced emission of an important greenhouse but also a new source of fuel. Concerns over the effects of global climate change and the eventual demise of fossil fuels makes the search for clean alternative energy sources a top priority. This chapter details the progress in these two increasingly important areas: hydrogen production by photocatalytic water splitting and photocatalytic carbon dioxide reduction.

Keywords

Fossil Fuel Valence Band Hole Pair Water Splitting Photocatalytic Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    US Energy Information Administration (2009) International energy outlook 2009 document #DOE/EIA-0484Google Scholar
  2. 2.
    Hansen J, Sato M (2004) Greenhouse gas growth rates. Proc Natl Acad Sci USA 101:16109–16114CrossRefGoogle Scholar
  3. 3.
    Fischer H, Wahlen M, Smith J et al (1999) Ice core records of atmospheric CO2 around the last three glacial terminations. Science 283:1712–1714CrossRefGoogle Scholar
  4. 4.
    Luthi D, Le Floch M, Bereiter B et al (2008) High-resolution carbon dioxide concentration record 650, 000-800, 000 years before present. Nature 453:379–382CrossRefGoogle Scholar
  5. 5.
    McMichael A, Woodruff R (2004) Climate change and risk to health. Br Med J 329:1416–1417CrossRefGoogle Scholar
  6. 6.
    Jackson RB, Schlesinger WH (2004) Curbing the US carbon deficit. Proc Natl Acad Sci USA 101:15827–15829CrossRefGoogle Scholar
  7. 7.
    Schimel D, Melillo J, Tian HQ et al (2000) Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States. Science 287:2004–2006CrossRefGoogle Scholar
  8. 8.
    Armaroli N, Balzani V (2007) The future of energy supply: challenges and opportunities. Angew Chem Int Ed 46:52–66CrossRefGoogle Scholar
  9. 9.
    Caetano MAL, Gherardi DFM, Yoneyama T (2008) Optimal resource management control for CO2 emission and reduction of the greenhouse effect. Ecol Modell 213:119–126CrossRefGoogle Scholar
  10. 10.
    Zhang PD, Jia G, Wang G (2007) Contribution to emission reduction of CO2 and SO2 by household biogas construction in rural China. Renewable Sustainable Energy Rev 11:1903–1912CrossRefGoogle Scholar
  11. 11.
    Arrhenius S (1896) On the influence of carbonic acid in the air upon the temperature of the ground. Philos Mag A 41:237–276Google Scholar
  12. 12.
    Keith DW (2009) Why capture CO2 from the atmosphere? Science 325:1654–1655CrossRefGoogle Scholar
  13. 13.
    Gilfillan SMV, Lollar BS, Holland G et al (2009) Solubility trapping in formation water as dominant CO2 sink in natural gas fields. Nature 458:614–618CrossRefGoogle Scholar
  14. 14.
    Barreto L, Makihira A, Riahi K (2003) The hydrogen economy in the 21st century: a sustainable development scenario. Int J Hydrogen Energy 28:267–284CrossRefGoogle Scholar
  15. 15.
    Crabtree GW, Dresselhaus MS, Buchanan MV (2004) The hydrogen economy. Phys Today 57:39–44CrossRefGoogle Scholar
  16. 16.
    Dunn S (2002) Hydrogen futures: toward a sustainable energy system. Int J Hydrogen Energy 27:235–264CrossRefGoogle Scholar
  17. 17.
    Moriarty P, Honnery D (2009) Hydrogen's role in an uncertain energy future. Int J Hydrogen Energy 34:31–39CrossRefGoogle Scholar
  18. 18.
    Schlapbach L, Zuttel A (2001) Hydrogen-storage materials for mobile applications. Nature 414:353–358CrossRefGoogle Scholar
  19. 19.
    Zuttel A (2004) Hydrogen storage methods. Naturwissenschaften 91:157–172CrossRefGoogle Scholar
  20. 20.
    Hurum DC, Gray KA, Rajh T et al (2005) Recombination pathways in the Degussa P25 formulation of TiO2: surface versus lattice mechanisms. J Phys Chem B 109:977–980CrossRefGoogle Scholar
  21. 21.
    Mohapatra SK, Raja KS, Mahajan VK et al (2008) Efficient photoelectrolysis of water using TiO2 nanotube arrays by minimizing recombination losses with organic additives. J Phys Chem C 112:11007–11012CrossRefGoogle Scholar
  22. 22.
    Fox MA, Dulay MT (1993) Heterogeneous photocatalysis. Chem Rev 93:341–357CrossRefGoogle Scholar
  23. 23.
    Colombo DP, Bowman RM (1996) Does interfacial charge transfer compete with charge carrier recombination? A femtosecond diffuse reflectance investigation of TiO2 nanoparticles. J Phys Chem 100:18445–18449CrossRefGoogle Scholar
  24. 24.
    Kaneco S, Shimizu Y, Ohta K et al (1998) Photocatalytic reduction of high pressure carbon dioxide using TiO2 powders with a positive hole scavenger. J Photochem Photobiol A 115:223–226CrossRefGoogle Scholar
  25. 25.
    Younpblood WJ, Lee SHA, Kobayashi Y et al (2009) Photoassisted overall water splitting in a visible light-absorbing dye-sensitized photoelectrochemical cell. J Am Chem Soc 131:926–927CrossRefGoogle Scholar
  26. 26.
    Li GH, Dimitrijevic NM, Chen L et al (2008) Role of surface/interfacial Cu2+ sites in the photocatalytic activity of coupled CuO-TiO2 nanocomposites. J Phys Chem C 112:19040–19044Google Scholar
  27. 27.
    Yeredla RR, Xu HF (2008) Incorporating strong polarity minerals of tourmaline with semiconductor titania to improve the photosplitting of water. J Phys Chem C 112:532–539CrossRefGoogle Scholar
  28. 28.
    Bhattacharyya K, Varma S, Tripathi AK et al (2008) Effect of vanadia doping and its oxidation state on the photocatalytic activity of TiO2 for gas-phase oxidation of ethene. J Phys Chem C 112:19102–19112Google Scholar
  29. 29.
    Choi WY, Termin A, Hoffmann MR (1994) The role of metal-ion dopants in quantum-sized TiO2 – correlation between photoreactivity and charge-carrier recombination dynamics. J Phys Chem 98:13669–13679CrossRefGoogle Scholar
  30. 30.
    Yan XL, He J, Evans DG et al (2005) Preparation, characterization and photocatalytic activity of Si-doped and rare earth-doped TiO2 from mesoporous precursors. Appl Catal, B 55:243–252CrossRefGoogle Scholar
  31. 31.
    Wang YQ, Cheng HM, Zhang L et al (2000) The preparation, characterization, photoelectrochemical and photocatalytic properties of lanthanide metal-ion-doped TiO2 nanoparticles. J Mol Catal A: Chem 151:205–216CrossRefGoogle Scholar
  32. 32.
    Bae ST, Shin H, Kim JY et al (2008) Roles of MgO coating layer on mesoporous TiO2/ITO electrode in a photoelectrochemical cell for water splitting. J Phys Chem C 112:9937–9942CrossRefGoogle Scholar
  33. 33.
    Livraghi S, Chierotti MR, Giamello E et al (2008) Nitrogen-doped titanium dioxide active in photocatalytic reactions with visible light: a multi-technique characterization of differently prepared materials. J Phys Chem C 112:17244–17252CrossRefGoogle Scholar
  34. 34.
    Jagadale TC, Takale SP, Sonawane RS et al (2008) N-doped TiO2 nanoparticle based visible light photocatalyst by modified peroxide sol-gel method. J Phys Chem C 112:14595–14602CrossRefGoogle Scholar
  35. 35.
    Graciani J, Nambu A, Evans J et al (2008) Au - N synergy and N-doping of metal oxide-based photocatalysts. J Am Chem Soc 130:12056–12063CrossRefGoogle Scholar
  36. 36.
    Kesselman JM, Weres O, Lewis NS et al (1997) Electrochemical production of hydroxyl radical at polycrystalline Nb-doped TiO2 electrodes and estimation of the partitioning between hydroxyl radical and direct Hole oxidation pathways. J Phys Chem B 101:2637–2643CrossRefGoogle Scholar
  37. 37.
    Fang J, Wang F, Qian K et al (2008) Bifunctional N-doped mesoporous TiO2 photocatalysts. J Phys Chem C 112:18150–18156CrossRefGoogle Scholar
  38. 38.
    Varghese OK, Paulose M, LaTempa TJ et al (2009) High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Lett 9:731–737CrossRefGoogle Scholar
  39. 39.
    Gai YQ, Li JB, Li SS et al (2009) Design of narrow-gap TiO2: a passivated codoping approach for enhanced photoelectrochemical activity. Phys Rev Lett 102:036402CrossRefGoogle Scholar
  40. 40.
    Hong YC, Bang CU, Shin DH et al (2005) Band gap narrowing of TiO2 by nitrogen doping in atmospheric microwave plasma. Chem Phys Lett 413:454–457CrossRefGoogle Scholar
  41. 41.
    Hidalgo MC, Maicu M, Navio JA et al (2009) Effect of sulfate pretreatment on gold-modified TiO2 for photocatalytic applications. J Phys Chem C 113:12840–12847CrossRefGoogle Scholar
  42. 42.
    Usubharatana P, McMartin D, Veawab A et al (2006) Photocatalytic process for CO2 emission reduction from industrial flue gas streams. Ind Eng Chem Res 45:2558–2568CrossRefGoogle Scholar
  43. 43.
    Osterloh FE (2008) Inorganic materials as catalysts for photochemical splitting of water. Chem Mater 20:35–54CrossRefGoogle Scholar
  44. 44.
    Domen K, Kondo JN, Hara M et al (2000) Photo- and mechano-catalytic overall water splitting reactions to form hydrogen and oxygen on heterogeneous catalysts. Bull Chem Soc Jpn 73:1307–1331CrossRefGoogle Scholar
  45. 45.
    Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278CrossRefGoogle Scholar
  46. 46.
    Bahnemann D (2004) Photocatalytic water treatment: solar energy applications. Sol Energy 77:445–459CrossRefGoogle Scholar
  47. 47.
    Hoffmann MR, Martin ST, Choi WY et al (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96CrossRefGoogle Scholar
  48. 48.
    Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRefGoogle Scholar
  49. 49.
    Fujishima A, Honda KB (1971) Electrochemical evidence for the mechanism of the primary stage of photosynthesis. Bull Chem Soc Jpn 44:1148–1150CrossRefGoogle Scholar
  50. 50.
    Yang YH, Chen QY, Yin ZL et al (2005) Progress in research of photocatalytic water splitting. Prog Chem 17:631–642Google Scholar
  51. 51.
    Navarro RM, Sanchez-Sanchez MC, Alvarez-Galvan MC et al (2009) Hydrogen production from renewable sources: biomass and photocatalytic opportunities. Energy Environ Sci 2:35–54CrossRefGoogle Scholar
  52. 52.
    Inoue T, Fujishima A, Konishi S et al (1979) Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 277:637–638CrossRefGoogle Scholar
  53. 53.
    Koci K, Obalova L, Lacny Z (2008) Photocatalytic reduction of CO2 over TiO2 based catalysts. Chem Pap 62:1–9CrossRefGoogle Scholar
  54. 54.
    Kaneco S, Kurimoto H, Shimizu Y et al (1999) Photocatalytic reduction of CO2 using TiO2 powders in supercritical fluid CO2. Energy 24:21–30CrossRefGoogle Scholar
  55. 55.
    Anpo M, Yamashita H, Ichihashi Y et al (1995) Photocatalytic reduction Of CO2 with H2O on various titanium-oxide catalysts. J Electroanal Chem 396:21–26CrossRefGoogle Scholar
  56. 56.
    Yamashita H, Shiga A, Kawasaki S et al (1995) Photocatalytic synthesis of CH4 and CH3OH from CO2 and H2O on highly dispersed active titanium-oxide catalysts. Energy Convers Manage 36:617–620CrossRefGoogle Scholar
  57. 57.
    Mizuno T, Adachi K, Ohta K et al (1996) Effect of CO2 pressure on photocatalytic reduction of CO2 using TiO2 in aqueous solutions. J Photochem Photobiol Chem 98:87–90CrossRefGoogle Scholar
  58. 58.
    Tan SS, Zou L, Hu E (2006) Photocatalytic reduction of carbon dioxide into gaseous hydrocarbon using TiO2 pellets. Catal Today 115:269–273CrossRefGoogle Scholar
  59. 59.
    Tan SS, Zou L, Hu E (2007) Photosynthesis of hydrogen and methane as key components for clean energy system. Sci Technol Adv Mater 8:89–92CrossRefGoogle Scholar
  60. 60.
    Xia XH, Jia ZH, Yu Y et al (2007) Preparation of multi-walled carbon nanotube supported TiO2 and its photocatalytic activity in the reduction of CO2 with H2O. Carbon 45:717–721CrossRefGoogle Scholar
  61. 61.
    Kaneco S, Kurimoto H, Ohta K et al (1997) Photocatalytic reduction of CO2 using TiO2 powders in liquid CO2 medium. J Photochem Photobiol Chem 109:59–63CrossRefGoogle Scholar
  62. 62.
    Adachi K, Ohta K, Mizuno T (1994) Photocatalytic reduction of carbon-dioxide to hydrocarbon using copper-loaded titanium-dioxide. Sol Energy 53:187–190CrossRefGoogle Scholar
  63. 63.
    Ren MM, Valsaraj K (2009) Inverse opal titania on optical fiber for the photoreduction of CO2 to CH3OH. Int J Chem Reactor Eng 7:19Google Scholar
  64. 64.
    Wu JCS, Lin HM, Lai CL (2005) Photo reduction of CO2 to methanol using optical-fiber photoreactor. Appl Catal Gen 296:194–200CrossRefGoogle Scholar
  65. 65.
    Anpo M, Yamashita H, Ichihashi Y et al (1997) Photocatalytic reduction of CO2 with H2O on titanium oxides anchored within micropores of zeolites: effects of the structure of the active sites and the addition of Pt. J Phys Chem B 101:2632–2636CrossRefGoogle Scholar
  66. 66.
    Yamashita H, Fujii Y, Ichihashi Y et al (1998) Selective formation of CH3OH in the photocatalytic reduction of CO2 with H2O on titanium oxides highly dispersed within zeolites and mesoporous molecular sieves. Catal Today 45:221–227CrossRefGoogle Scholar
  67. 67.
    Liu BJ, Torimoto T, Matsumoto H et al (1997) Effect of solvents on photocatalytic reduction of carbon dioxide using TiO2 nanocrystal photocatalyst embedded in SiO2 matrices. J Photochem Photobiol Chem 108:187–192CrossRefGoogle Scholar
  68. 68.
    Wu JCS (2009) Photocatalytic reduction of greenhouse gas CO2 to fuel. Catal Surv Asia 13:30–40CrossRefGoogle Scholar
  69. 69.
    Liu B-J, Torimoto T, Yoneyama H (1998) Photocatalytic reduction of carbon dioxide in the presence of nitrate using TiO2 nanocrystal photocatalyst embedded in SiO2 matrices. J Photochem Photobiol, A 115:227–230CrossRefGoogle Scholar
  70. 70.
    Sasirekha N, Basha SJS, Shanthi K (2006) Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide. Appl Catal, B 62:169–180CrossRefGoogle Scholar
  71. 71.
    Kohno Y, Hayashi H, Takenaka S et al (1999) Photo-enhanced reduction of carbon dioxide with hydrogen over Rh/TiO2. J Photochem Photobiol, A 126:117–123CrossRefGoogle Scholar
  72. 72.
    Tseng IH, Wu JCS, Chou HY (2004) Effects of sol-gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction. J Catal 221:432–440CrossRefGoogle Scholar
  73. 73.
    Subrahmanyam M, Kaneco S, Alonso-Vante N (1999) A screening for the photo reduction of carbon dioxide supported on metal oxide catalysts for C1-C3 selectivity. Appl Catal, B 23:169–174CrossRefGoogle Scholar
  74. 74.
    Xie T-f, Wang D-j, Zhu L-j et al (2001) Application of surface photovoltage technique in photocatalysis studies on modified TiO2 photo-catalysts for photo-reduction of CO2. Mater Chem Phys 70:103–106CrossRefGoogle Scholar
  75. 75.
    Tseng IH, Chang W-C, Wu JCS (2002) Photoreduction of CO2 using sol-gel derived titania and titania-supported copper catalysts. Appl Catal, B 37:37–48CrossRefGoogle Scholar
  76. 76.
    Guan G, Kida T, Yoshida A (2003) Reduction of carbon dioxide with water under concentrated sunlight using photocatalyst combined with Fe-based catalyst. Appl Catal, B 41:387–396CrossRefGoogle Scholar
  77. 77.
    Shioya Y, Ikeue K, Ogawa M et al (2003) Synthesis of transparent Ti-containing mesoporous silica thin film materials and their unique photocatalytic activity for the reduction of CO2 with H2O. Appl Catal, A 254:251–259CrossRefGoogle Scholar
  78. 78.
    Ikeue K, Nozaki S, Ogawa M et al (2002) Characterization of self-standing Ti-containing porous silica thin films and their reactivity for the photocatalytic reduction of CO2 with H2O. Catal Today 74:241–248CrossRefGoogle Scholar
  79. 79.
    Anpo M, Yamashita H, Ikeue K et al (1998) Photocatalytic reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 mesoporous zeolites at 328 K. Catal Today 44:327–332CrossRefGoogle Scholar
  80. 80.
    Ikeue K, Yamashita H, Anpo M et al (2001) Photocatalytic reduction of CO2 with H2O on Ti-zeolite photocatalysts: effect of the hydrophobic and hydrophilic properties. J Phys Chem B 105:8350–8355CrossRefGoogle Scholar
  81. 81.
    Ulagappan N, Frei H (2000) Mechanistic study of CO2 photoreduction in Ti silicalite molecular sieve by FT-IR spectroscopy. J Phys Chem A 104:7834–7839CrossRefGoogle Scholar
  82. 82.
    Kohno Y, Tanaka T, Funabiki T et al (1997) Photoreduction of carbon dioxide with hydrogen over ZrO2. Chem Commun 1997:841–842CrossRefGoogle Scholar
  83. 83.
    Kohno Y, Tanaka T, Funabiki T et al (2000) Photoreduction of CO2 with H2 over ZrO2. A study on interaction of hydrogen with photoexcited CO2. Phys Chem Chem Phys 2:2635–2639CrossRefGoogle Scholar
  84. 84.
    Kohno Y, Tanaka T, Funabiki T et al (2000) Reaction mechanism in the photoreduction of CO2 with CH4 over ZrO2. Phys Chem Chem Phys 2:5302–5307CrossRefGoogle Scholar
  85. 85.
    Kohno Y, Ishikawa H, Tanaka T et al (2001) Photoreduction of carbon dioxide by hydrogen over magnesium oxide. Phys Chem Chem Phys 3:1108–1113CrossRefGoogle Scholar
  86. 86.
    Fujiwara H, Hosokawa H, Murakoshi K et al (1997) Effect of surface structures on photocatalytic CO2 reduction using quantized CdS nanocrystallites. J Phys Chem B 101:8270–8278CrossRefGoogle Scholar
  87. 87.
    Liu B-J, Torimoto T, Yoneyama H (1998) Photocatalytic reduction of CO2 using surface-modified CdS photocatalysts in organic solvents. J Photochem Photobiol, A 113:93–97CrossRefGoogle Scholar
  88. 88.
    Hori H, Ishihara J, Koike K et al (1999) Photocatalytic reduction of carbon dioxide using [fac-Re(bpy)(CO)3(4-Xpy)]+ (Xpy = pyridine derivatives). J Photochem Photobiol, A 120:119–124CrossRefGoogle Scholar
  89. 89.
    Hori H, Takano Y, Koike K et al (2003) Efficient rhenium-catalyzed photochemical carbon dioxide reduction under high pressure. Inorg Chem Commun 6:300–303CrossRefGoogle Scholar
  90. 90.
    Hori H, Koike K, Suzuki Y et al (2002) High-pressure photocatalytic reduction of carbon dioxide using [fac-Re(bpy)(CO)3P(OiPr)3]+ (bpy = 2, 2′-bipyridine). J Mol Catal A: Chem 179:1–9CrossRefGoogle Scholar
  91. 91.
    Hirose T, Maeno Y, Himeda Y (2003) Photocatalytic carbon dioxide photoreduction by Co(bpy)32+ sensitized by Ru(bpy)32+ fixed to cation exchange polymer. J Mol Catal A: Chem 193:27–32CrossRefGoogle Scholar
  92. 92.
    Gokon N, Hasegawa N, Kaneko H et al (2003) Photocatalytic effect of ZnO on carbon gasification with CO2 for high temperature solar thermochemistry. Sol Energy Mater Sol Cells 80:335–341CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryUniversity of MississippiOxfordUSA

Personalised recommendations