Advertisement

Reducing Greenhouse Gas Emissions with CO2 Capture and Geological Storage

  • J. Marcelo Ketzer
  • Rodrigo S. Iglesias
  • Sandra Einloft

Abstract

CO2 capture and geological storage (CCS) is one of the most promising technologies to reduce greenhouse gas emissions and mitigate climate change in a fossil fuel–dependant world. If fully implemented, CCS may contribute to reduce 20% of global emissions from fossil fuels by 2050 and 55% by the end of this century. The complete CCS chain consists of capturing CO2 from large stationary sources such as coal-fired power plants and heavy industries, and transport and store it in appropriate geological reservoir s such as petroleum fields, saline aquifer s, and coal seams, therefore returning carbon emitted from fossil fuels (as CO2) back to geological sinks.

Recent studies have shown that geological reservoirs can safely store for many centuries the entire GHG global emissions. Here presented a comprehensive summary of the latest advances in CCS research and technologies that can be used to store significant quantities of CO2 for geological periods of time and, therefore, considerably contribute to GHG emission reduction.

Keywords

Ionic Liquid Room Temperature Ionic Liquid Saline Aquifer Trapping Mechanism Geological Reservoir 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    IEA (2001) Putting carbon back into the ground: IEA greenhouse gas R&D programme. IEA, CheltenhamGoogle Scholar
  2. 2.
    Pacala S, Socolow R (2004) Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science 305(5686):968–972CrossRefGoogle Scholar
  3. 3.
    IPCC (2005) Special report on carbon dioxide capture and storage. IPCC, New YorkGoogle Scholar
  4. 4.
    IEA (2008) Energy technology perspectives: scenarios and strategies to 2050. IEA, ParisGoogle Scholar
  5. 5.
    IEA (2009) Technology roadmap – carbon capture and storage. IEA, ParisGoogle Scholar
  6. 6.
    Rubin ES (2008) CO2 capture and transport. Elements 4(5):311–317CrossRefGoogle Scholar
  7. 7.
    Bachu S (2003) Screening and ranking of sedimentary basins for sequestration of CO2 in geological media in response to climate change. Environ Geol 44(3):277–289CrossRefGoogle Scholar
  8. 8.
    Bachu S, Bonijoly D, Bradshaw J et al (2007) CO2 storage capacity estimation: methodology and gaps. Int J Greenhouse Gas Control 1(4):430–443CrossRefGoogle Scholar
  9. 9.
    Bradshaw J, Bachu S, Bonijoly D et al (2007) CO2 storage capacity estimation: issues and development of standards. Int J Greenhouse Gas Control 1(1):62–68CrossRefGoogle Scholar
  10. 10.
    IEA (2009) Carbon capture and storage: full-scale demonstration progress update. IEA, ParisGoogle Scholar
  11. 11.
    IEA (2009) CO2 capture and storage: a key abatement option. IEA, ParisGoogle Scholar
  12. 12.
    Blomen E, Hendriks C, Neele F (2009) Capture technologies: improvements and promising developments. Energy Procedia 1(1):1505–1512CrossRefGoogle Scholar
  13. 13.
    Feron PHM (2010) Exploring the potential for improvement of the energy performance of coal fired power plants with post-combustion capture of carbon dioxide. Int J Greenhouse Gas Control 4(2):152–160CrossRefGoogle Scholar
  14. 14.
    Kothandaraman A, Nord L, Bolland O et al (2009) Comparison of solvents for post-combustion capture of CO2 by chemical absorption. Energy Procedia 1(1):1373–1380CrossRefGoogle Scholar
  15. 15.
    IPCC (2007) Climate change 2007: the physical science basis. contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. IPCC, CambridgeGoogle Scholar
  16. 16.
    Figueroa JD, Fout T, Plasynski S et al (2008) Advances in CO2 capture technology – the U.S. department of Energy’s carbon sequestration program. Int J Greenhouse Gas Control 2(1):9–20CrossRefGoogle Scholar
  17. 17.
    Yang H, Xu Z, Fan M et al (2008) Progress in carbon dioxide separation and capture: a review. J Environ Sci 20(1):14–27CrossRefGoogle Scholar
  18. 18.
    Zhao L, Riensche E, Menzer R et al (2008) A parametric study of CO2/N2 gas separation membrane processes for post-combustion capture. J Membr Sci 325(1):284–294CrossRefGoogle Scholar
  19. 19.
    Kanniche M, Gros-Bonnivard R, Jaud P et al (2010) Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture. Appl Therm Eng 30(1):53–62CrossRefGoogle Scholar
  20. 20.
    Abad A, Mattisson T, Lyngfelt A et al (2006) Chemical-looping combustion in a 300 W continuously operating reactor system using a manganese-based oxygen carrier. Fuel 85(9):1174–1185CrossRefGoogle Scholar
  21. 21.
    Corbella BM, de Diego L, García-Labiano F et al (2005) Characterization and performance in a multicycle test in a fixed-bed reactor of silica-supported copper oxide as oxygen carrier for chemical-looping combustion of methane. Energy Fuels 20(1):148–154CrossRefGoogle Scholar
  22. 22.
    de Diego LF, Gayan P, García-Labiano F et al (2005) Impregnated CuO/Al2O3 oxygen carriers for chemical-looping combustion: avoiding fluidized Bed agglomeration. Energy Fuels 19(5):1850–1856CrossRefGoogle Scholar
  23. 23.
    Feron PHM, Hendriks CA (2005) Les différents procédés de capture du CO2 et leurs coûts. Oil Gas Sci Technol 60(3):451–459CrossRefGoogle Scholar
  24. 24.
    Bara JE, Carlisle TK, Gabriel CJ et al (2009) Guide to CO2 separations in imidazolium-based room-temperature ionic liquids. Ind Eng Chem Res 48(6):2739–2751CrossRefGoogle Scholar
  25. 25.
    Pennline HW, Luebke DR, Jones KL et al (2008) Progress in carbon dioxide capture and separation research for gasification-based power generation point sources. Fuel Process Tech 89(9):897–907CrossRefGoogle Scholar
  26. 26.
    Hicks JC, Drese JH, Fauth DJ et al (2008) Designing adsorbents for CO2 capture from flue Gas-Hyperbranched Aminosilicas capable of capturing CO2 reversibly. J Am Chem Soc 130(10):2902–2903CrossRefGoogle Scholar
  27. 27.
    Pannocchia G, Puccini M, Seggiani M et al (2007) Experimental and modeling studies on high-temperature capture of CO2 using lithium Zirconate based sorbents. Ind Eng Chem Res 46(21):6696–6706CrossRefGoogle Scholar
  28. 28.
    Lepaumier H, Picq D, Carrette PL (2009) Degradation study of new solvents for CO2 capture in post-combustion. Energy Procedia 1(1):893–900CrossRefGoogle Scholar
  29. 29.
    Puxty G, Rowland R, Allport A et al (2009) Carbon dioxide Postcombustion capture: a novel screening study of the carbon dioxide absorption performance of 76 amines. Environ Sci Technol 43(16):6427–6433CrossRefGoogle Scholar
  30. 30.
    Xu X, Song C, Andrésen JM et al (2003) Preparation and characterization of novel CO2 “molecular basket” adsorbents based on polymer-modified mesoporous molecular sieve MCM-41. Microporous Mesoporous Mater 62(1–2):29–45CrossRefGoogle Scholar
  31. 31.
    Zhang J, Singh R, Webley PA (2008) Alkali and alkaline-earth cation exchanged chabazite zeolites for adsorption based CO2 capture. Microporous Mesoporous Mater 111(1–3):478–487CrossRefGoogle Scholar
  32. 32.
    Walton KS, Abney MB, Douglas LeVan M (2006) CO2 adsorption in Y and X zeolites modified by alkali metal cation exchange. Microporous Mesoporous Mater 91(1–3):78–84CrossRefGoogle Scholar
  33. 33.
    García-Pérez E, Parra J, Ania C et al (2007) A computational study of CO2, N2, and CH4 adsorption in zeolites. Adsorption 13(5):469–476CrossRefGoogle Scholar
  34. 34.
    Millward AR, Yaghi OM (2005) Metal – organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J Am Chem Soc 127(51):17998–17999CrossRefGoogle Scholar
  35. 35.
    Franz J, Scherer V (2010) An evaluation of CO2 and H2 selective polymeric membranes for CO2 separation in IGCC processes. J Membr Sci 265(1–2):9Google Scholar
  36. 36.
    Powell CE, Qiao GG (2006) Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. J Membr Sci 279(1–2):1–49CrossRefGoogle Scholar
  37. 37.
    Scovazzo P, Kieft J, Finan DA et al (2004) Gas separations using non-hexafluorophosphate [PF6] anion supported ionic liquid membranes. J Membr Sci 238(1–2):57–63CrossRefGoogle Scholar
  38. 38.
    Shin E-K, Lee B-C (2008) High-pressure phase behavior of carbon dioxide with ionic liquids: 1-alkyl-3-methylimidazolium trifluoromethanesulfonate. J Chem Eng Data 53(12):2728–2734CrossRefGoogle Scholar
  39. 39.
    Carvalho PJ, Álvarez VH, Machado JJB et al (2009) High pressure phase behavior of carbon dioxide in 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids. J Supercrit Fluids 48(2):99–107CrossRefGoogle Scholar
  40. 40.
    Raeissi S, Peters CJ (2008) Carbon dioxide solubility in the homologous 1-alkyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide family. J Chem Eng Data 54(2):382–386Google Scholar
  41. 41.
    Welton T (2004) Ionic liquids in catalysis. Coord Chem Rev 248(21–24):2459–2477CrossRefGoogle Scholar
  42. 42.
    Muldoon MJ, Aki SNVK, Anderson JL et al (2007) Improving carbon dioxide solubility in ionic liquids. J Phys Chem B 111(30):9001–9009CrossRefGoogle Scholar
  43. 43.
    Blasig A, Tang J, Hu X et al (2007) Magnetic suspension balance study of carbon dioxide solubility in ammonium-based polymerized ionic liquids: poly(p-vinylbenzyltrimethyl ammonium tetrafluoroborate) and poly([2-(methacryloyloxy)ethyl] trimethyl ammonium tetrafluoroborate). Fluid Phase Equilib 256(1–2):75–80CrossRefGoogle Scholar
  44. 44.
    Tang J, Sun W, Tang H et al (2005) Enhanced CO2 absorption of poly(ionic liquid)s. Macromolecules 38(6):2037–2039CrossRefGoogle Scholar
  45. 45.
    Anthony JL, Anderson JL, Maginn EJ et al (2005) Anion effects on gas solubility in ionic liquids. J Phys Chem B 109(13):6366–6374CrossRefGoogle Scholar
  46. 46.
    Anderson JL, Dixon JK, Maginn EJ et al (2006) Measurement of SO2 solubility in ionic liquids. J Phys Chem B 110(31):15059–15062CrossRefGoogle Scholar
  47. 47.
    Tang J, Tang H, Sun W et al (2005) Poly(ionic liquid)s: a new material with enhanced and fast CO2 absorption. Chem Commun 26:3325–3327Google Scholar
  48. 48.
    Scherer GW, Celia MA, Prévost J-H et al (2005) Leakage of CO2 through abandoned wells: role of corrosion of cement. In: Thomas DC, Benson S (eds) Carbon dioxide capture for storage in deep geologic formations – results from the CO2 capture project. Elsevier, AmsterdamGoogle Scholar
  49. 49.
    Bentham M, Kirby G (2005) CO2 storage in saline aquifers. Oil Gas Sci Technol 60(3):559–567CrossRefGoogle Scholar
  50. 50.
    Holt T, Jensen JI, Lindeberg E (1995) Underground storage of CO2 in aquifers and oil reservoirs. Energ Convers Manage 36(6–9):535–538CrossRefGoogle Scholar
  51. 51.
    Gunter WD, Bachu S, Benson S (2004) The role of hydrogeological and geochemical trapping in sedimentary basins for secure geological storage of carbon dioxide. In: Baines SJ, Worden RH (eds) Geological storage of carbon dioxide. Geological Society, LondonGoogle Scholar
  52. 52.
    van Bergen F, Gale J, Damen KJ et al (2005) Worldwide selection of early opportunities for CO2-enhanced oil recovery and CO2-enhanced coal bed methane production. Energy 29(9–10):1611–1621Google Scholar
  53. 53.
    Gozalpour F, Ren SR, Tohidi B (2005) CO2 EOR and storage in oil reservoirs. Oil Gas Sci Technol 60(3):537–546CrossRefGoogle Scholar
  54. 54.
    Blunt M, Fayers FJ, Orr FM Jr (1993) Carbon dioxide in enhanced oil recovery. Energ Convers Manage 34(9–11):1197–1204CrossRefGoogle Scholar
  55. 55.
    Taber JJ, Martin FD, Seright RS (1997) EOR screening criteria revisited – part 1: introduction to screening criteria and enhanced recovery field projects. SPE Res Eng 12(3):9Google Scholar
  56. 56.
    Taber JJ, Martin FD, Seright RS (1997) EOR screening criteria revisited – part 2: applications and impact of Oil prices. SPE Res Eng 12(3):6Google Scholar
  57. 57.
    Moritis G (1998) 1998 Worldwide EOR survey. Oil Gas J 20:48Google Scholar
  58. 58.
    Pruess K, Garcia J (2002) Multiphase flow dynamics during CO2 disposal into saline aquifers. Environ Geol 42(2–3):282–295CrossRefGoogle Scholar
  59. 59.
    Gale J, Freund P (2001) Coal-bed methane enhancement with CO2 sequestration worldwide potential. Environ Geosci 8(3):210–217CrossRefGoogle Scholar
  60. 60.
    Day S, Fry R, Sakurovs R et al (2010) Swelling of coals by supercritical gases and its relationship to sorption. Energy Fuels 24(4):2777–2783CrossRefGoogle Scholar
  61. 61.
    Reeves SR, Schoeling L (2001) Geological sequestration of CO2 in coal seams: reservoir mechanisms, field performance, and economics. In: Fifth international conference on greenhouse gas control technologies. CSIRO, CairnsGoogle Scholar
  62. 62.
    Stevens SH, Kuuskraa VA, Gale J et al (2001) CO2 injection and sequestration in depleted oil and gas fields and deep coal seams: worldwide potential and costs. Environ Geosci 8(3):200–209CrossRefGoogle Scholar
  63. 63.
    Kaszuba JP, Janecky DR, Snow MG (2003) Carbon dioxide reaction processes in a model brine aquifer at 200 degrees C and 200 bars: implications for geologic sequestration of carbon. Appl Geochem 18(7):1065–1080CrossRefGoogle Scholar
  64. 64.
    Gaus I (2010) Role and impact of CO2-rock interactions during CO2 storage in sedimentary rocks. Int J Greenhouse Gas Control 4(1):73–89CrossRefGoogle Scholar
  65. 65.
    Ketzer JM, Iglesias R, Einloft S et al (2009) Water-rock-CO2 interactions in saline aquifers aimed for carbon dioxide storage: experimental and numerical modeling studies of the Rio Bonito formation (Permian), southern Brazil. Appl Geochem 24(5):760–767CrossRefGoogle Scholar
  66. 66.
    Rosenbauer RJ, Koksalan T, Palandri JL (2005) Experimental investigation of CO2-brine-rock interactions at elevated temperature and pressure: implications for CO2 sequestration in deep-saline aquifers. Fuel Process Technol 86(14–15):1581–1597CrossRefGoogle Scholar
  67. 67.
    Bateman K, Turner G, Pearce JM et al (2005) Large-scale column experiment: study of CO2, porewater, rock reactions and model test case. Oil Gas Sci Technol 60(1):161–175CrossRefGoogle Scholar
  68. 68.
    Tsang C-F, Doughty C, Rutqvist J et al (2007) Modeling to understand and simulate physico-chemical processes of CO2 geological storage. In: Wilson EJ, Gerard D (eds) Carbon capture and sequestration: integrating technology, monitoring and regulation. Blackwell, New YorkGoogle Scholar
  69. 69.
    Steefel CI, DePaolo DJ, Lichtner PC (2005) Reactive transport modeling: an essential tool and a new research approach for the earth sciences. Earth Planet Sci Lett 240(3–4):539–558CrossRefGoogle Scholar
  70. 70.
    Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2) – a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey Water Resources Investigations, DenverGoogle Scholar
  71. 71.
    Xu TF, Sonnenthal E, Spycher N et al (2006) TOUGHREACT – a simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: applications to geothermal injectivity and CO2 geological sequestration. Comput Geosci 32(2):145–165CrossRefGoogle Scholar
  72. 72.
    Palandri JL, Kharaka YK (2004) A compilation of rate parameters of water-mineral interaction for application to geochemical modeling. U.S. Geological Survey, Menlo ParkGoogle Scholar
  73. 73.
    Wilson EJ, Gerard D (2007) Risk assessment and management for geologic sequestration of carbon dioxide. In: Wilson EJ, Gerard D (eds) Carbon capture and sequestration – integrating technology, monitoring and regulation. Blackwell, New YorkGoogle Scholar
  74. 74.
    Benson SM, Cole DR (2008) CO2 Sequestration in deep sedimentary formations. Elements 4(5):325–331CrossRefGoogle Scholar
  75. 75.
    Katz DL, Tek MR (1981) Overview of underground storage of natural Gas. J Petrol Technol 33:943–951Google Scholar
  76. 76.
    Nuclear Energy Agency (2008) Moving forward with geological disposal of radioactive waste. OECD, ParisGoogle Scholar
  77. 77.
    Baines SJ, Worden RH (2004) The long-term fate of CO2 in the subsurface: natural analogues for CO2 storage. In: Baines SJ, Worden RH (eds) Geological storage of carbon dioxide. Geological Society, LondonGoogle Scholar
  78. 78.
    Pearce JM (1996) Natural occurrences as analogues for the geological disposal of carbon. Fuel Energ Abstr 37(4):305MathSciNetGoogle Scholar
  79. 79.
    Stevens SH, Fox CE, Melzer LS (2000) McElmo Dome and St. Johns natural CO2 deposits: analogs for carbon sequestration. In: GHGT-5, CairnsGoogle Scholar
  80. 80.
    Arts R, Winthaegen P (2005) Monitoring options for CO2 storage. In: Benson SM (ed) Carbon dioxide capture for storage in deep geologic formations – results from the CO2 capture project. Elsevier, AmsterdamGoogle Scholar
  81. 81.
    Benson S (2007) Monitoring geological storage of carbon dioxide. In: Wilson EJ, Gerard D (eds) Carbon capture and sequestration – integrating technology, monitoring and regulation. Blackwell, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • J. Marcelo Ketzer
    • 1
  • Rodrigo S. Iglesias
    • 1
    • 2
  • Sandra Einloft
    • 1
    • 3
  1. 1.CEPAC – Brazilian Carbon Storage Research CenterPontifical Catholic University of Rio Grande do SulPorto AlegreBrazil
  2. 2.FENG – Engineering FacultyPontifical Catholic University of Rio Grande do SulPorto AlegreBrazil
  3. 3.FAQUI – Chemistry FacultyPontifical Catholic University of Rio Grande do SulPorto AlegreBrazil

Personalised recommendations