Harvesting Solar Energy Using Inexpensive and Benign Materials

  • Susannah Lee
  • Melissa Vandiver
  • Balasubramanian Viswanathan
  • Vaidyanathan (Ravi) Subramanian
Reference work entry


Historically, the growth and prosperity of human civilization has mainly been propelled by fossil energy (coal and petroleum) usage. Decades of tested and proven technologies has led to a continuous increase in demand for fossil-based fuels. As a result, we are now finding ourselves at the threshold of a critical tipping point where environmental consequences and global climate can be irreversibly affected and hence cannot be ignored. More than ever before, our unending and rapidly growing need for energy has necessitated urgent action on efforts to examine alternative forms of energy sources that are eco-friendly, sustainable, and economical.

There are several alternatives to fossil-based fuels. These include biomass, solar, wind, geothermal, and nuclear options as prominent and possible sources. All these options can assist us with reducing our dependence on fossil fuels. Solar energy, being one of them, has the unique potential to meet a broad gamut of current global energy demand. These include domestic applications such as solar-assisted cooking, space, heating, as well as industrial processes such as drying. Solar energy utilization in several key areas such as electricity generation (photovoltaics), clean fuel production (hydrogen), environmental remediation (photocatalytic degradation of pollutants), and reduction of greenhouse gases (CO2 conversion to value-added chemicals) is also of great interest. A key challenge that must be addressed to boost commercialization of solar energy technologies, and common to these applications, is material properties and solar energy utilization efficiency. To realize large-scale and efficient solar energy utilization, application-based materials with a unique combination of properties have to be developed. The material has to absorb visible light, be cost competitive, composed of earth abundant elements, and nontoxic, all at the same time.

This chapter consists of ten sections. The first introduction section consists of a detailed discussion on the importance of energy in human activity, the effects of fossil fuels on climate and human lifestyle, and materials that meet many of the above criteria. The second section provides a short and critical comparison of solar energy with other alternatives. The third section provides a quick review of the basic concepts of solar energy. The commonly employed toolkits used in the characterization of materials for solar energy conversion are discussed in section four. Some of these tools can be used to evaluate specific optical, electronic, and catalytic properties of materials. Section five discusses the main categories of materials that are either commercialized or under development. The challenges to developing new materials for solar energy conversion are addressed in section six. Section seven outlines some of the main strategies to test the promising materials before a large-scale commercialization attempt is initiated. Section eight profiles companies and institutions that are engaged in efforts to evaluate, improve, and commercialize solar energy technologies. This segment provides information about the product from a few representative companies around the world and their niche in the commercial market. Section nineprovides a general outlook into the trend in solar energy utilization, commercialization, and its future. Finally, section ten provides the authors’ concluding perspective about the solar energy as a pathway for reducing our dependence on fossil fuels. At the conclusion of this chapter, we have also provided over 100 references that are highly recommended for further in-depth study into various aspects of solar energy.


Solar Cell Solar Energy Water Splitting Solar Energy Conversion Biomass Gasification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank Prof. Wei-Yin Chen for the opportunity to make this contribution. Vaidyanathan Subramanian would like to thank the representatives of Konarka®, Dyesol®, and Inventux Technologies® for their time and contributions. He would also like to thank Prof. Misra and York Smith for their insights as well as the Department of Energy (Grant # DE-EE0000272) for the financial support.


  1. 1.
    Hultman NE (2007) Curr Hist 106:376Google Scholar
  2. 2.
    Weiss M, Neelis M, Blok K, Patel M (2009) Clim Change 95:369Google Scholar
  3. 3.
    Rotmans J, Swart R (1990) Environ Manag 14:291Google Scholar
  4. 4.
    Danielsen AL (1978) Rev Bus Econ Res 13:1Google Scholar
  5. 5.
    Lenzen M (2008) Energy Convers Manag 49:2178Google Scholar
  6. 6.
    Germogenova TA (2002) Prog Nucl Energy 40:1Google Scholar
  7. 7.
    Tester JW, Drake EM, Driscoll MJ, Golay MW, Peters WA (2005) Sustainable energy-choosing among options. MIT Press, Cambridge, MAGoogle Scholar
  8. 8.
    AWEA (2010) Vol 2010. American Wind Energy Association, Washington DCGoogle Scholar
  9. 9.
    Knoll A, Klink K (2009) Renewable Energy 34:2493Google Scholar
  10. 10.
    Price T, Bunn J, Probert D, Hales R (1996) Appl Energy 54:103Google Scholar
  11. 11.
    Sanderson KW (2007) Cereal Foods World 52:5Google Scholar
  12. 12.
    Oliveira LS, Franca AS, Camargos RRS, Ferraz VP (2008) Bioresour Technol 99:3244Google Scholar
  13. 13.
    Kondamudi N, Mohapatra SK, Misra M (2008) J Agric Food Chem 56:11757Google Scholar
  14. 14.
    Ginley D, Green MA, Collins R (2008) MRS Bull 33:355Google Scholar
  15. 15.
    Bahnemann D (2004) Solar Energy 77:445Google Scholar
  16. 16.
    Mills A, Davies RH, Worsley D (1993) Chem Soc Rev 22:417Google Scholar
  17. 17.
    Bezdek RH, Hirshberg AS, Babcock WH (1979) Science 203:1214Google Scholar
  18. 18.
    Sakai I, Takagi M, Terakawa K, Ohue J (1976) Solar Energy 18:525Google Scholar
  19. 19.
    Kulkarni GN, Kedare SB, Bandyopadhyay S (2007) Solar Energy 81:958Google Scholar
  20. 20.
    Kalogirou SA (2009) Solar space heating and cooling: processes and systems. Elsevier, AmsterdamGoogle Scholar
  21. 21.
    García-Valladares O, Pilatowsky I, Ruíz V (2008) Solar Energy 82:613Google Scholar
  22. 22.
    Han J, Mol APJ, Lu Y (2010) Energy Policy 38:383Google Scholar
  23. 23.
    Kaushal A, Varun (2010) Renewable Sustain Energy Rev 14:446Google Scholar
  24. 24.
    Tiwari GN, Singh HN, Tripathi R (2003) Solar Energy 75:367Google Scholar
  25. 25.
    Tiwari GN, Kumar S, Sharma PB, Khan ME (1996) Appl Therm Eng 16:189Google Scholar
  26. 26.
    Khalifa AJN, Hamood AM (2009) Solar Energy 83:1312Google Scholar
  27. 27.
    Sharma A, Chen CR, Lan NV (2009) Renewable Sustain Energy Rev 13:1185Google Scholar
  28. 28.
    Tiwari GN, Bhatia PS, Singh AK, Sutar RF (1994) Energy Convers Manag 35:535Google Scholar
  29. 29.
    Harmim A, Boukar M, Amar M (2008) Solar Energy 82:287Google Scholar
  30. 30.
    Sharma A, Chen CR, Murty VVS, Shukla A (2009) Renewable Sustain Energy Rev 13:1599Google Scholar
  31. 31.
    Hou Z, Zheng DX (2009) Appl Therm Eng 29:3169Google Scholar
  32. 32.
    Vorayos N, Kiatsiriroat T, Vorayos N (2006) Renewable Energy 31:2543Google Scholar
  33. 33.
    De Falco M, Giaconia A, Marrelli L, Tarquini P, Grena R, Caputo G (2009) Int J Hydrogen Energy 34:98Google Scholar
  34. 34.
    Peterson CL, Hustrulid T (1998) Biomass Bioenergy 14:91Google Scholar
  35. 35.
    Bube RH (1990) Annu Rev Mater Sci 20:19Google Scholar
  36. 36.
    Server H (2010) Photovoltaics: solar electricity and solar cells in theory and practice GermanyGoogle Scholar
  37. 37.
    Takeda Y, Kato N, Higuchi K, Takeichi A, Motohiro T, Fukumoto S, Sano T, Toyoda T (2009) Solar Energy Mater Solar Cells 93:808Google Scholar
  38. 38.
    Landi BJ, Castro SL, Ruf HJ, Evans CM, Bailey SG, Raffaelle RP (2005) Solar Energy Mater Solar Cells 87:733Google Scholar
  39. 39.
    Ito S, Murakami TN, Comte P, Liska P, Grätzel C, Nazeeruddin MK, Grätzel M (2008) Thin Solid Films 516:4613Google Scholar
  40. 40.
    REN21-Secretariat (2010) Renewable energy 2010 global status reportGoogle Scholar
  41. 41.
    Kudo A, Miseki Y (2009) Chem Soc Rev 38:253Google Scholar
  42. 42.
    Aroutiounian VM, Arakelyan VM, Shahnazaryan GE (2005) Solar Energy 78:581Google Scholar
  43. 43.
    Matsuoka M, Kitano M, Takeuchi M, Tsujimaru K, Anpo M, Thomas JM (2007) Catal Today 122:51Google Scholar
  44. 44.
    Teramura K, Okuoka S, Tsuneoka H, Shishido T, Tanaka T (2010) Appl Catal B Environ (in press)Google Scholar
  45. 45.
    Anpo M, Yamashita H, Ichihashi Y, Ehara SJ (1995) J Electroanal Chem 396:21Google Scholar
  46. 46.
    Qin S, Xin F, Liu Y, Yin X, Ma W (2011) J Colloid Interface Sci 356:257Google Scholar
  47. 47.
    Hoffmann MR, Martin ST, Choi WY, Bahnemann DW (1995) Chem Rev 95:69Google Scholar
  48. 48.
    Linsebigler AL, Lu GQ, Yates JT (1995) Chem Rev 95:735Google Scholar
  49. 49.
    Fujishima A, Rao TN, Tryk DA (2000) J Photochem Photobiol C 1:1Google Scholar
  50. 50.
    Gogate PR, Pandit AB (2004) Adv Environ Res 8:501Google Scholar
  51. 51.
    Mor GK, Varghese OK, Paulose M, Shankar K, Grimes CA (2006) Solar Energy Mater Solar Cells 90:2011Google Scholar
  52. 52.
    Rajeshwar K, de Tacconi NR, Chenthamarakshan CR (2001) Chem Mater 13:2765Google Scholar
  53. 53.
    Subramanian V (2007) Interface 16:32MathSciNetGoogle Scholar
  54. 54.
    Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, BostonGoogle Scholar
  55. 55.
    Workman JJ (1998) Chapter 2: ultraviolet, visible, and near infrared spectroscopy. Academic, Chestnut HillGoogle Scholar
  56. 56.
    Kamat PV, Flumiani M, Dawson A (2002) Colloids Surf A Physicochem Eng Asp 202:269Google Scholar
  57. 57.
    Bahnemann DW, Hilgendorff M, Memming R (1997) J Phys Chem B 101:4265Google Scholar
  58. 58.
    Best JP, Dunstan DE (2009) Int J Hydrogen Energy 34:7562Google Scholar
  59. 59.
    Wang M, Na Y, Gorlov M, Sun LC (2009) Dalton Trans 6458Google Scholar
  60. 60.
    Cui Y, Du H, Wen LS (2008) J Mater Sci Technol 24:675Google Scholar
  61. 61.
    Strobel R, Baiker A, Pratsinis SE (2006) Adv Powder Technol 17:457Google Scholar
  62. 62.
    Kar A, Sohn Y, Subramanian V (2008) Chapter 10: synthesis of oxide semiconductors, metal nanoparticles and semiconductor-metal nanocomposites. Research Signpost, Trivandrum (Invited)Google Scholar
  63. 63.
    Bard AJ (1979) J Photochem 10:59Google Scholar
  64. 64.
    Zach M, Hagglund C, Chakarov D, Kasemo B (2006) Curr Opin Solid State Mater Sci 10:132Google Scholar
  65. 65.
    Gratzel M (2001) Nature 414:338Google Scholar
  66. 66.
    Gratzel M (1991) Coord Chem Rev 111:167Google Scholar
  67. 67.
    Ni M, Leung MKH, Leung DYC, Sumathy K (2007) Renewable Sustain Energy Rev 11:401Google Scholar
  68. 68.
    Kalyanasundaram K, Gratzel M (1997) Proc Indian Acad Sci Chem Sci 109:447Google Scholar
  69. 69.
    Cheng P, Gu MY, Jin YP (2005) Prog Chem 17:8Google Scholar
  70. 70.
    Cozzoli PD, Fanizza E, Comparelli R, Curri ML, Agostiano A, Laub D (2004) J Phys Chem B 108:9623Google Scholar
  71. 71.
    Robel I, Subramanian V, Kuno MK, Kamat PV (2006) J Am Chem Soc 128:2385Google Scholar
  72. 72.
    Frank AJ, Kopidakis N, van de Lagemaat J (2004) Coord Chem Rev 248:1165Google Scholar
  73. 73.
    Choi WY, Termin A, Hoffmann MR (1994) J Phys Chem 98:13669Google Scholar
  74. 74.
    Perezalbuerne EA, Tyan YS (1980) Science 208:902Google Scholar
  75. 75.
    Kurtz S, Friedman D, Geisz J, McMahon W (2007) J Cryst Growth 298:748Google Scholar
  76. 76.
    Schropp REI (2004) Thin Solid Films 451–452:455Google Scholar
  77. 77.
    Kazmerski LL (2006) J Electron Spectros Relat Phenomena 150:105Google Scholar
  78. 78.
    Goetzberger A, Hebling C, Schock HW (2003) Mater Sci Eng R Rep 40:1Google Scholar
  79. 79.
    Dhere NG, Kulkarni SS, Jahagirdar AH, Kadam AA (2005) J Phys Chem Solids 66:1876Google Scholar
  80. 80.
    Baur C, Bett AW, Dimroth F, Siefer G, Meuw M, Bensch W, Kostler W, Strobl G (2007) J Solar Energy Eng Trans Asme 129:258Google Scholar
  81. 81.
    Cravino A (2007) Polym Int 56:943Google Scholar
  82. 82.
    Liang YY, Xiao SQ, Feng DQ, Yu LP (2008) J Phys Chem C 112:7866Google Scholar
  83. 83.
    Gratzel M (2005) MRS Bull 30:23Google Scholar
  84. 84.
    Thomas MG, Post HN, DeBlasio R (1999) Prog Photovoltaics 7:1Google Scholar
  85. 85.
    Green MA (2007) J Mater Sci Mater Electron 18:S15Google Scholar
  86. 86.
    Guenes S, Sariciftci NS (2008) Inorganica Chim Acta 361:581Google Scholar
  87. 87.
    Catchpole KR, McCann MJ, Weber KJ, Blakers AW (2001) Solar Energy Mater Solar Cells 68:173Google Scholar
  88. 88.
    Oktik S (1988) Prog Cryst Growth Characterization Mater 17:171Google Scholar
  89. 89.
    Bosio A, Romeo N, Mazzamuto S, Canevari V (2006) Prog Cryst Growth Characterization Mater 52:247Google Scholar
  90. 90.
    Miles RW, Hynes KM, Forbes I (2005) Prog Cryst Growth Characterization Mater 51:1Google Scholar
  91. 91.
    Kaelin M, Rudmann D, Tiwari AN (2004) Solar Energy 77:749Google Scholar
  92. 92.
    Eberspacher C, Fredric C, Pauls K, Serra J (2001) Thin Solid Films 387:18Google Scholar
  93. 93.
    Kay A, Gratzel M (1996) Solar Energy Mater Solar Cells 44:99Google Scholar
  94. 94.
    Tao J, Sun Y, Ge MY, Chen X, Dai N (2010) ACS Appl Mater Interfaces 2:265Google Scholar
  95. 95.
    Kuang D, Brillet J, Chen P, Takata M, Uchida S, Miura H, Sumioka K, Zakeeruddin SM, Grtzel M (2008) ACS Nano 2:1113Google Scholar
  96. 96.
    Wei QS, Hirota K, Tajima K, Hashimoto K (2006) Chem Mater 18:5080Google Scholar
  97. 97.
    Kondo M, Takenaka A, Ishikawa A, Kurata S, Hayashi K, Nishio H, Nishimura K, Yamagishi H, Tawada T (1997) Solar Energy Mater Solar Cells 49:127Google Scholar
  98. 98.
    Hou XH, Choy KL (2005) Thin Solid Films 480:13Google Scholar
  99. 99.
    Todorov T, Cordoncillo E, Sanchez-Royo JF, Carda J, Escribano P (2006) Chem Mater 18:3145Google Scholar
  100. 100.
    Zhang A, Ma Q, Lu MK, Yu GW, Zhou YY, Qiu ZF (2008) Cryst Growth Des 8:2402Google Scholar
  101. 101.
    Shah A, Meier J, Buechel A, Kroll U, Steinhauser J, Meillaud F, Schade H, Domine D (2006) Thin Solid Films 502:292Google Scholar
  102. 102.
    Damonte LC, Donderis V, Ferrari S, Meyer M, Orozco J, Hernandez-Fenollosa MA (2010) Int J Hydrogen Energy 35:5834Google Scholar
  103. 103.
    Feng ZF, Zhou JZ, Xi YY, Lan BB, Guo HH, Chen HX, Zhang QB, Lin ZHJ (2009) J Power Sources 194:1142Google Scholar
  104. 104.
    Taima T, Sakai J, Yamanari T, Saito K (2009) Solar Energy Mater Solar Cells 93:742Google Scholar
  105. 105.
    Hanrath T, Veldman D, Choi JJ, Christova CG, Wienk MM, Janssen RAJ (2009) ACS Appl Mater Interfaces 1:244Google Scholar
  106. 106.
    Muduli S, Lee W, Dhas V, Mujawar S, Dubey M, Vijayamohanan K, Han SH, Ogale S (2009) ACS Appl Mater Interfaces 1:2030Google Scholar
  107. 107.
    Lee WJ, Ramasamy E, Lee DY, Song JS (2009) ACS Appl Mater Interfaces 1:1145Google Scholar
  108. 108.
    Honda S, Nogami T, Ohkita H, Benten H, Ito S (2009) ACS Appl Mater Interfaces 1:804Google Scholar
  109. 109.
    Ouyang JY, Xia YJ (2009) Solar Energy Mater Solar Cells 93:1592Google Scholar
  110. 110.
    Xin H, Reid OG, Ren GQ, Kim FS, Ginger DS, Jenekhe SA (2010) ACS Nano 4:1861Google Scholar
  111. 111.
    Wadia C, Alivisatos AP, Kammen DM (2009) Environ Sci Technol 43:2072Google Scholar
  112. 112.
    Hu Y, Zheng Z, Jia HM, Tang YW, Zhang LZ (2008) J Phys Chem C 112:13037Google Scholar
  113. 113.
    Rajeshwar K (2007) J Appl Electrochem 37:765Google Scholar
  114. 114.
    Woodhouse M, Parkinson BA (2009) Chem Soc Rev 38:197Google Scholar
  115. 115.
    Rocheleau RE, Miller EL, Misra A (1998) Energy Fuels 12:3Google Scholar
  116. 116.
    Kelly NA, Gibson TL (2006) Int J Hydrogen Energy 31:1658Google Scholar
  117. 117.
    Nowotny J, Bak T, Nowotny MK, Sheppard LR (2006) J Phys Chem B 110:18492Google Scholar
  118. 118.
    Park JH, Kim S, Bard AJ (2006) Nano Lett 6:24Google Scholar
  119. 119.
    Hu XL, Li GS, Yu JC (2010) Langmuir 26:3031Google Scholar
  120. 120.
    Shankar K, Basham JI, Allam NK, Varghese OK, Mor GK, Feng XJ, Paulose M, Seabold JA, Choi KS, Grimes CA (2009) J Phys Chem C 113:6327Google Scholar
  121. 121.
    Shaban YA, Khan SUM (2008) Int J Hydrogen Energy 33:1118Google Scholar
  122. 122.
    Somasundaram S, Chenthamarakshan CRN, de Tacconi NR, Rajeshwar K (2007) Int J Hydrogen Energy 32:4661Google Scholar
  123. 123.
    Takabayashi S, Nakamura R, Nakato Y (2004) J Photochem Photobiol A Chem 166:107Google Scholar
  124. 124.
    Jang JS, Yoon KY, Xiao XY, Fan FRF, Bard AJ (2009) Chem Mater 21:4803Google Scholar
  125. 125.
    Jang JS, Lee J, Ye H, Fan FRF, Bard AJ (2009) J Phys Chem C 113:6719Google Scholar
  126. 126.
    Sivula K, Le Formal F, Gratzel M (2009) Chem Mater 21:2862Google Scholar
  127. 127.
    Miseki Y, Kusama H, Sugihara H, Sayama K (2010) J Phys Chem Lett 1:1196Google Scholar
  128. 128.
    Guo YF, Quan X, Lu N, Zhao HM, Chen S (2007) Environ Sci Technol 41:4422Google Scholar
  129. 129.
    Zheng L, Xu Y, Song Y, Wu CZ, Zhang M, Xie Y (2009) Inorg Chem 48:4003Google Scholar
  130. 130.
    Ma LL, Lin YL, Wang Y, Li JL, Wang E, Qiu MQ, Yu Y (2008) J Phys Chem C 112:18916Google Scholar
  131. 131.
    Reyes-Gil KR, Reyes-Garcia EA, Raftery D (2007) J Phys Chem C 111:14579Google Scholar
  132. 132.
    Niu MT, Huang F, Cui LF, Huang P, Yu YL, Wang YS (2010) ACS Nano 4:681Google Scholar
  133. 133.
    Liu M, Jing D, Zhao L, Guo L (in press) Int J Hydrogen EnergyGoogle Scholar
  134. 134.
    Li C, Yuan J, Han B, Jiang L, Shangguan WF (in press) Int J Hydrogen EnergyGoogle Scholar
  135. 135.
    Hinogami R, Nakamura Y, Yae S, Nakato Y (1998) J Phys Chem B 102:974Google Scholar
  136. 136.
    Koci K, Obalova L, Matejova L, Placha D, Lacny Z, Jirkovsky J, Solcova O (2009) Appl Catal B Environ 89:494Google Scholar
  137. 137.
    Li GH, Ciston S, Saponjic ZV, Chen L, Dimitrijevic NM, Rajh T, Gray KA (2008) J Catal 253:105Google Scholar
  138. 138.
    Wang CJ, Thompson RL, Baltrus J, Matranga C (2010) J Phys Chem Lett 1:48Google Scholar
  139. 139.
    Tseng IH, Wu JCS, Chou HY (2004) J Catal 221:432Google Scholar
  140. 140.
    Wu JCS, Lin HM, Lai CL (2005) Appl Catal A Gen 296:194Google Scholar
  141. 141.
    Anpo M (1995) Solar Energy Mater Solar Cells 38:221Google Scholar
  142. 142.
    Tan SS, Zou L, Hu E (2006) Catal Today 115:269Google Scholar
  143. 143.
    Yamashita H, Fujii Y, Ichihashi Y, Zhang SG, Ikeue K, Park DR, Koyano K, Tatsumi T, Anpo M (1998) Catal Today 45:221Google Scholar
  144. 144.
    Tada H, Hattori A, Tokihisa Y, Imai K, Tohge N, Ito S (2000) J Phys Chem B 104:4585Google Scholar
  145. 145.
    Xie TF, Wang DJ, Zhu LJ, Li TJ, Xu YJ (2001) Mater Chem Phys 70:103Google Scholar
  146. 146.
    Fujiwara H, Hosokawa H, Murakoshi K, Wada Y, Yanagida S, Okada T, Kobayashi H (1997) J Phys Chem B 101:8270Google Scholar
  147. 147.
    Ikeue K, Nozaki S, Ogawa M, Anpo M (2002) Catal Lett 80:111Google Scholar
  148. 148.
    Yamagata S, Nishijo M, Murao N, Ohta S, Mizoguchi I (1995) Zeolites 15:490Google Scholar
  149. 149.
    Kawai T, Kuwabara T, Yoshino K (1992) J Chem Soc Faraday Trans 88:2041Google Scholar
  150. 150.
    Liu YY, Huang BB, Dai Y, Zhang XY, Qin XY, Jiang MH, Whangbo MH (2009) Catal Commun 11:210Google Scholar
  151. 151.
    Matsumoto Y, Obata M, Hombo J (1994) J Phys Chem 98:2950Google Scholar
  152. 152.
    Teramura K, Tsuneoka H, Shishido T, Tanaka T (2008) Chem Phys Lett 467:191Google Scholar
  153. 153.
    Pan PW, Chen YW (2007) Catal Commun 8:1546Google Scholar
  154. 154.
    Wurfel P (2002) Physica E Low Dimens Syst Nanostruct 14:18Google Scholar
  155. 155.
    Miles RW, Zoppi G, Forbes I (2007) Mater Today 10:20Google Scholar
  156. 156.
    Guha S, Yang J (2006) J Non Cryst Solids 352:1917Google Scholar
  157. 157.
    Bosi M, Pelosi C (2007) Prog Photovoltaics 15:51Google Scholar
  158. 158.
    Solanki CS, Beaucarne G (2007) Energy Sustain Dev 11:17Google Scholar
  159. 159.
    Toivola M, Halme J, Miettunen K, Aitola K, Lund PD (2009) Int J Energy Res 33:1145Google Scholar
  160. 160.
    Hillhouse HW, Beard MC (2009) Curr Opin Colloid Interface Sci 14:245Google Scholar
  161. 161.
    Chamberlain RG (1980) Eur J Oper Res 5:405Google Scholar
  162. 162.
    Hoppe H, Sariciftci NSJ (2004) Mater Res 19:1924Google Scholar
  163. 163.
    Bauer GH (1993) Appl Surf Sci 70–71:650Google Scholar
  164. 164.
    Khaselev O, Turner JA (1998) Science 280:425Google Scholar
  165. 165.
    Goswami DY, Vijayaraghavan S, Lu S, Tamm G (2004) Solar Energy 76:33Google Scholar
  166. 166.
    Antoniadou M, Kondarides DI, Labou D, Neophytides S, Lianos P (2010) Solar Energy Mater Solar Cells 94:592Google Scholar
  167. 167.
    Sarria V, Kenfack S, Malato S, Blanco J, Pulgarin C (2005) Solar Energy 79:353Google Scholar
  168. 168.
    Kunjapur AM, Eldridge RB (2010) Ind Eng Chem Res 49:3516Google Scholar
  169. 169.
    Pittman JK, Dean AP, Osundeko O (2010) Bioresour Technol (in press)Google Scholar
  170. 170.
    Walke C (2009) Cap and trade, EPA, vol. 2010Google Scholar
  171. 171.
    Sundrop Fuels Inc. (2010) Louisville, vol 2010.
  172. 172.
  173. 173.
    Konarka Technology (2009) Lowell, vol 2010Google Scholar
  174. 174.
    Dyesol (2010) Solar cell technology. Dyesol, QueenbeyanGoogle Scholar
  175. 175.
    Inventux Technology (2010) Vol 2010, BerlinGoogle Scholar
  176. 176.
    Algenol (2010) Vol 2010.

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Susannah Lee
    • 1
  • Melissa Vandiver
    • 1
  • Balasubramanian Viswanathan
    • 2
  • Vaidyanathan (Ravi) Subramanian
    • 1
  1. 1.Department of Chemical and Metallurgical Engineering, Chemical and Materials Engineering Department, LME 310, MS 388University of NevadaRenoUSA
  2. 2.National Center for Catalysis ResearchIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations