Skip to main content

Fusion Energy

  • Reference work entry
Handbook of Climate Change Mitigation

Abstract

Nuclear Fusion is the power of the sun and all shining stars in the universe. Controlled nuclear fusion toward ultimate energy sources for human beings has been being developed intensively worldwide for this half a century. A fusion power plant is free from concern of exhaustion of fuels and production of CO2. Therefore it has very attractive potential to be eternal fundamental energy sources and will contribute to resolving problems of climate change. On the other hand, unresolved issues in physics and engineering still remain. It will take another several decades to realize a fusion power plant by integration of advanced science and engineering such as control of high-temperature plasma exceeding 100 million degrees in Celsius and breeding technology of tritium by generated neutrons. The research and development has just entered the phase of engineering demonstration to extract 500 MW of thermal energy from fusion reaction in the 2020s. The demonstration of electric power generation is targeted before 2040.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meade D (2010) 50 Years of fusion research. Nucl Fusion 50:014004

    Article  Google Scholar 

  2. Braams CM, Stott PE (2002) Nuclear fusion: half a century of magnetic confinement fusion research. IOP, London

    Book  Google Scholar 

  3. http://www.iter.org/

  4. Green BJ (2003) ITER: burning plasma physics experiment. Plasma Phys Cont Fusion 45:687–706

    Article  Google Scholar 

  5. Eliezer S, Eliezer Y (2001) The fourth state of matter: an introduction to plasma science. IOP, London

    Book  Google Scholar 

  6. Lie J, Zhang J, Duan X (2010) Magnetic fusion development for global warming suppression. Nucl Fusion 50:014005

    Article  Google Scholar 

  7. Mima K (2010) Inertial fusion development: the path to global warming suppression. Nucl Fusion 50:014006

    Article  Google Scholar 

  8. Report of Japan Atomic Energy Commision in 2005. Japanese, available at http://www.aec.go.jp/jicst/NC/senmon/kakuyugo2/siryo/kettei/houkoku051026/index.htm

  9. Jacquinot J (2010) Fifty years in fusion and the way forward. Nucl Fusion 50:014001

    Article  Google Scholar 

  10. Bethe H, Peierls R (1935) Quantum theory of the diplon. Proc R Soc London A 148:146–156

    Article  Google Scholar 

  11. Kaye and Laby Online (2005) Tables of physical & chemical constants, 16th edn. 2.1.4 Hygrometry version 1.0. Available at http://www.kayelaby.npl.co.uk/

  12. Atzeni S, Meyer-Ter-Vehn J (2004) The physics of inertial fusion. Clarendon, Oxford

    Book  Google Scholar 

  13. Wesson J (2004) Tokamaks (The international series of monographs on physics). Oxford University Press, Oxford

    Google Scholar 

  14. Sakharov AD, Leontovitch MA (eds) (1961) Plasma physics and the problem of controlled thermonuclear reactions, Vol. 1. Pergamon, London, p 21

    Google Scholar 

  15. Spitzer L Jr et al (1954) Problems of the stellarator as a useful power source. PM-S-14, USAEC NYO-6047

    Google Scholar 

  16. Uo K (1961) The confinement of plasma by the heliotron magnetic field. J Phys Soc Jpn 16:1380–1395

    Article  MATH  Google Scholar 

  17. http://www.lhd.nifs.ac.jp/en/

  18. Lawson JD (1957) Some criteria for a power producing thermonulear reactor. Proc Phys Soc Section B 70:6–10

    Article  Google Scholar 

  19. ITER Physics Basis Editors (1999) ITER Physics Basis. Nucl Fusion 39:2137–2638

    Article  Google Scholar 

  20. Dinklage A et al (2007) Physics model assessment of energy confinement time scaling in stellarators. Nucl Fusion 47:1265–1273

    Article  Google Scholar 

  21. Zinkle SJ (2005) Fusion material science: overview of challenges and recent progress. Phys Plasmas 12:058101

    Article  Google Scholar 

  22. Norgett MJ et al (1975) A proposed method of calculating displacement dose rates. Nucl Eng Design 33:50–54

    Article  Google Scholar 

  23. Muroga T et al (2002) Vanadium alloys – overview and recent results. J Nucl Matter 307–311:547–554

    Article  Google Scholar 

  24. Katoh Y et al (2007) Current status and critical issues for development of SiC composites for fusion applications. J Nucl Matter 367–370:659–671

    Article  Google Scholar 

  25. Martone M (ed) (1996) IFMIF-international fusion materials irradiation facility conceptual design activity, Final report. ENEA frascati report, RT/ERG/FUS/96/11

    Google Scholar 

  26. Garin P et al (2009) Main baseline of IFMIF/EVEDA project. Fusion Eng Design 84:259–264

    Article  Google Scholar 

  27. Aymar R (2001) Summary of the ITER final design report. ITER document G A0 FDR 4 01-06-28 R 0.2, Garching ITER joint work site, 9 July 2001

    Google Scholar 

  28. Giancarli L et al (2006) Breeding blanket modules testing in ITER: an international program on the way to DEMO. Fusion Eng Design 81:393–405

    Article  Google Scholar 

  29. Yamada H et al (2009) 10 years of engineering and physics achievements by the large helical device project. Fusion Eng Design 84:186–193

    Article  Google Scholar 

  30. Imagawa S et al (2010) Overview of LHD superconducting magnet system and its 10-year operation. Fusion Sci Tech 58:560–570

    Google Scholar 

  31. Ross L (2010) Superconductivity: its role, its success and its setbacks in the large hadron collider of CERN. Supercond Sci Tech 23:034001

    Article  Google Scholar 

  32. Mitchell N et al (2010) Status of the ITER magnets. Fusion Eng Design 84:113–121

    Article  Google Scholar 

  33. Kato T et al (2001) First test results for the ITER central solenoid model coil. Fusion Eng Design 56–57:59–70

    Article  Google Scholar 

  34. Koizumi N et al (2005) Development of advanced Nb3Al superconductors for a fusion demo plant. Nucl Fusion 45:431–438

    Article  Google Scholar 

  35. Hawryluk RJ et al (1998) Fusion plasma experiments on TFTR: a 20 year retrospective. Phys Plasmas 5:1577–1589

    Article  Google Scholar 

  36. http://www.jet.efda.org/

  37. Pamera J, Solano ER (2001) From JET to ITER: preparing the next step in fusion research. EFDA-JET-PR(01)16, EFDA, Culham Science Centre, Abington, Oxon

    Google Scholar 

  38. Ohyama N et al (2009) Overview of JT-60U results towards the establishment of advanced tokamak operation. Nucl Fusion 49:104007

    Article  Google Scholar 

  39. Komori A et al (2010) Goal and achievements of large helical device project. Fusion Sci Tech 58:1–11

    Google Scholar 

  40. http://www.ipp.mpg.de/ippcms/eng/pr/forschung/w7x/

  41. Bosch HS et al (2010) Construction of wendelstein 7-X engineering a steady-state stellarator. IEEE Trans Plasma Sci 38:265–273

    Article  Google Scholar 

  42. Webster AJ (2003) Fusion: power for the future. Phys Educ 38:135–142

    Article  Google Scholar 

  43. Team JET (1992) Fusion energy production from deuterium-tritium plasma in the JET tokamak. Nucl Fusion 32:187–203

    Article  Google Scholar 

  44. Ishida S et al (1999) JT-60U high performance regime. Nucl Fusion 39:1211–1226

    Article  Google Scholar 

  45. Bell M et al (1995) Overview of DT results from TFTR. Nucl Fusion 35:1429–1436

    Article  Google Scholar 

  46. Gibson A (1998) Deuterium-tritium plasmas in the Joint European Torus (JET): behavior and implications. Phys Plasmas 5:1839–1846

    Article  Google Scholar 

  47. Ikeda K et al (2007) ITER progress in the ITER physics basis. Nucl Fusion 47 E01, S1–S414

    Google Scholar 

  48. Ikeda K (2010) ITER on the road to fusion energy. Nucl Fusion 50:014002

    Article  Google Scholar 

  49. Ishida S et al (2010) Status and prospect of the JT-60SA project. Fusion Eng Design 85:2070–2079

    Article  Google Scholar 

  50. Masionnier D et al (2005) A conceptual study of commercial fusion power plants, final report of the European fusion power plant conceptual study (PPCS). European fusion development agreement, EFDA(05)-27/4.10 available at http://www.efda.org/eu_fusion_programme/downloads/scientific_and_technical_publications/PPCS_overall_report_final.pdf

  51. http://lasers.llnl.gov/

  52. McCraken G, Stott P (2005) Fusion: the energy of the universe. Elsevier Academic, London

    Google Scholar 

  53. Stacey WM (2010) Fusion: an introduction to the physics and technology of magnetic confinement fusion. Wiley-VCH, Weinheim

    Book  Google Scholar 

  54. Kikuchi M (2011) Frontiers in fusion research. Springer, London

    Book  Google Scholar 

  55. Chen FF (2011) An Indispensable truth, how fusion power can save the planet. Springer, London

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Yamada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this entry

Cite this entry

Yamada, H. (2012). Fusion Energy. In: Chen, WY., Seiner, J., Suzuki, T., Lackner, M. (eds) Handbook of Climate Change Mitigation. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7991-9_31

Download citation

Publish with us

Policies and ethics