Skip to main content

Chemicals from Biomass

  • Reference work entry
Handbook of Climate Change Mitigation

Abstract

The different biomass conversion routes to chemicals will be described in this chapter. Chapter 25, “Biomass as Feedstock,” gives an overview of the methods used to obtain chemicals from biomass. These processes along with some other chemical conversions can be used for the manufacture of chemicals from biomass. A list of chemicals compiled based on the carbon number in the chemicals will be discussed in this chapter. Some of these chemicals are presently made from nonrenewable feedstock like natural gas and petroleum while others are new chemicals that have potential to replace nonrenewable feedstock-based chemicals. Transesterification process is used to produce propylene chain of chemicals from glycerin. Fermentation is used to produce ethanol which is converted to ethylene and can be used for ethylene chain of chemicals. The chemicals discussed in this chapter include recent advances in chemistry and processes discussed include new frontiers for research in biomass to chemical production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Banholzer WF, Watson KJ, Jones ME (2008) How might biofuels impact the chemical industry? Chem Eng Prog 104(3):S7–S14

    Google Scholar 

  2. EIA (2010a) Weekly United States spot price FOB weighted by estimated import volume (dollars per barrel), Energy Information Administration. http://tonto.eia.doe.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=WTOTUSA&f=W. Accessed 8 May 2010

  3. EIA (2010b) Annual energy outlook 2010, Energy Information Administration. Report No. DOE/EIA-0383(2010)

    Google Scholar 

  4. EIA (2010c) Total carbon dioxide emissions from the consumption of energy (million metric tons), Energy Information Administration. http://tonto.eia.doe.gov/cfapps/ipdbproject/IEDIndex3. cfm?tid=90&pid=44&aid=8. Accessed 8 May 2010

  5. Energetics (2000) Energy and environmental profile of the U.S. chemical industry, Energy efficiency and renewable energy (US DOE). http://www1.eere.energy.gov/industry/chemicals/ pdfs/profile_chap1.pdf. Accessed 8 May 2010

  6. ACES (2010) H.R.2454 – American Clean Energy and Security Act of 2009. http://www.opencongress.org/bill/111-h2454/show. Accessed 8 May 2010

  7. EPA (2010) Mandatory reporting of greenhouse gases rule, United States Environmental Protection Agency. http://www.epa.gov/climatechange/emissions/ghgrulemaking.html. Accessed 8 May 2010

  8. Perlack RD, Wright LL, Turhollow AF, Graham RL (2005) Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. USDA document prepared by Oak Ridge National Laboratory, ORNL/TM-2005/66, Oak Ridge, TN, USA.

    Google Scholar 

  9. Short PL (2007) Small French firm’s bold dream. Chem EngrNews 85(35):26–27

    Google Scholar 

  10. Austin GT (1984) Shreve’s chemical process industries, 5th edn. McGraw-Hill Book Company, New York. ISBN 0070571473

    Google Scholar 

  11. Brown RC (2003) Biorenewable resources: engineering new products from agriculture. Iowa State Press, Iowa. ISBN 0813822637

    Google Scholar 

  12. NETL (2011) Gasifipedia, supporting technologies, Methanation. http://www.netl.doe.gov/technologies/coalpower/gasification/gasifipedia/5-support/ 5-12_methanation.html. Accessed 8 March 2011

  13. Klass DL (1998) Biomass for renewable energy, fuels and chemicals. Academic Press, California. ISBN 0124109500

    Google Scholar 

  14. Wells GM (1999) Handbook of petrochemicals and processes, 2nd edn. Ashgate Publishing Company, Brookfield

    Google Scholar 

  15. Paster M, Pellegrino JL, Carole TM (2003) Industrial bioproducts: today and tomorrow. Department of Energy Report prepared by Energetics, Inc, http://www.energetics.com/resourcecenter/products/studies/Documents/bioproducts-pportunities.pdf. Columbia, MD

  16. Spath PL, Dayton DC (2003) Preliminary screening – technical and economic feasibility of synthesis gas to fuels and chemicals with the emphasis on the potential for biomass-derived syngas, NREL/TP-510-34929, National Renewable Energy Laboratory. http://www.nrel.gov/docs/fy04osti/34929.pdf Golden, CO, USA. Accessed 8 May 2010

  17. EPM (2010) Plants list. Ethanol Producers Magazine. http://www.ethanolproducer.com/plant-list.jsp. Accessed 8 May 2010

  18. DOE (2010b) Biomass energy databook. United States Department of Energy. http://cta.ornl.gov/bedb/biofuels.shtml. Accessed 8 May 2010

  19. DOE (2007c) DOE selects six cellulosic ethanol plants for up to $385 million in federal funding. http://www.energy.gov/print/4827.htm. Accessed 2 Oct 2007

  20. Johnson DL (2006) The corn wet milling and corn dry milling industry – a base for biorefinery technology developments. In: Kamm B, Gruber PR, Kamm M (eds) Biorefineries – industrial processes and products. Wiley-VCH, Weinheim, Germany. ISBN 3-527-31027-4

    Google Scholar 

  21. Tolan JS (2006) Iogen’s demonstration process for producing ethanol from cellulosic biomass. In: Kamm B, Gruber PR, Kamm M (eds) Biorefineries – industrial processes and products, vol 1. Wiley-VCH, Weinheim. ISBN 3-527-31027-4

    Google Scholar 

  22. Aden A, Ruth M, Ibsen K, Jechura J, Neeves K, Sheehan J, Wallace B (2002) Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover, NREL/TP-510-32438. National Renewable Energy Laboratory, Golden

    Book  Google Scholar 

  23. Humbird D, Aden A (2009) Biochemical production of ethanol from corn stover, 2008: state of technology model, NREL/TP-510-46214. National Renewable Energy Laboratory, Golden

    Book  Google Scholar 

  24. Ito T, Nakashimada Y, Senba K, Matsui T, Nishio N (2005) Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process. J Biosci Bioeng 100(3):260–265

    Article  Google Scholar 

  25. Phillips S, Aden A, Jechura J, Dayton D, Eggeman T (2007) Thermochemical ethanol via indirect gasification and mixed alcohol synthesis of lignocellulosic biomass, NREL/TP-510-41168 National Renewable Energy Laboratory, Golden

    Google Scholar 

  26. Snyder SW (2007) Overview of biobased feedstocks. Twelfth new industrial chemistry and engineering conference on biobased feedstocks, Council for Chemical Research, Argonne National Laboratory, Chicago, IL (11–13 June 2007)

    Google Scholar 

  27. Dutta A, Philips SD (2009) Thermochemical ethanol via direct gasification and mixed alcohol synthesis of lignocellulosic biomass, NREL/TP-510-45913. National Renewable Energy Laboratory, Golden

    Book  Google Scholar 

  28. Holtzapple MT, Davison RR, Ross MK, Aldrett-Lee S, Nagwani M, Lee CM, Lee C, Adelson S, Kaar W, Gaskin D, Shirage H, Chang NS, Chang VS, Loescher ME (1999) Biomass conversion to mixed alcohol fuels using the MixAlco process. Appl Biochem Biotech 79(1–3):609–631

    Article  Google Scholar 

  29. Thanakoses P, Alla Mostafa NA, Holtzapple MT (2003) (a); Conversion of sugarcane bagasse to carboxylic acids using a mixed culture of mesophilic microorganisms. Appl Biochem Biotechnol 107(1–3):523–546

    Article  Google Scholar 

  30. Aiello-Mazzarri C, Agbogbo FK, Holtzapple MT (2006) Conversion of municipal solid waste to carboxylic acids using a mixed culture of mesophilic microorganisms. Bioresour Technol 97(1):47–56

    Article  Google Scholar 

  31. Thanakoses P, Black AS, Holtzapple MT (2003) Fermentation of corn stover to carboxylic acids. Biotechnol Bioeng 83(2):191–200

    Article  Google Scholar 

  32. Ondrey G (2007) Coproduction of cellulose acetate promises to improve economics of ethanol production. Chem Eng 114(6):12

    Google Scholar 

  33. ICIS (2009) Ethylene. ICIS Chem Bus 276(15):40

    Google Scholar 

  34. Takahara I, Saito M, Inaba M, Murata K (2005) Dehydration of ethanol into ethylene over solid acid catalysts. Catal Lett 105(3–4):249–252

    Article  Google Scholar 

  35. Philip CB, Datta R (1997) Production of ethylene from hydrous ethanol on H-ZSM-5 under mild conditions. Ind Eng Chem Res 36(11):4466–4475

    Article  Google Scholar 

  36. Varisli D, Dogu T, Dogu G (2007) Ethylene and diethyl-ether production by dehydration reaction of ethanol over different heteropolyacid catalysts. Chem Eng Sci 62(18–20):5349–5352

    Google Scholar 

  37. Tsao U, Zasloff HB (1979) Production of ethylene from ethanol. U.S. Patent No. 4,134,926

    Google Scholar 

  38. C&E News (2007a) Dow to make polyethylene from sugar in Brazil. Chem Eng News 85(30):17

    Article  Google Scholar 

  39. Werpy T, Peterson G, Aden A, Bozell J, Holladay J, White J, Manheim A (2004) Top value added chemicals from biomass: vol. 1 Results of screening for potential candidates from sugars and synthesis gas. Energy Efficiency and Renewable Energy (US DOE). http://www1.eere.energy.gov/biomass/pdfs/35523.pdf. Accessed 8 May 2010

  40. Dasari MA, Kiatsimkul PP, Sutterlin WR, Suppes GJ (2005) Low-pressure hydrogenolysis of glycerol to propylene glycol. Appl Catal Gen 281(1–2):225–231

    Article  Google Scholar 

  41. Karinen RS, Krause AOI (2006) New biocomponets from glycerol. Appl Catal, A 306:128–133

    Article  Google Scholar 

  42. Shima M, Takahashi T (2006) Method for producing acrylic acid. U.S. Patent No. 7,612,230

    Google Scholar 

  43. Koutinas AA, Du C, Wang RH, Webb C (2008) Production of chemicals from biomass. In: Clark JH, Deswarte FEI (eds) Introduction to chemicals from biomass. Wiley, Great Britain. ISBN 978-0-470-05805-3

    Google Scholar 

  44. Tullo AH (2007) Soy rebounds. Chem Eng News 85(34):36–39

    Article  Google Scholar 

  45. Zhang ZY, Jin B, Kelly JM (2007) Production of lactic acid from renewable materials by Rhizopus fungi. Biochem Eng J 35(3):251–263

    Article  Google Scholar 

  46. Ondrey G (2007b) Propylene glycol. Chem Eng 114(6):10

    Google Scholar 

  47. Ondrey G (2007) A vapor-phase glycerin-to-PG process slated for its commercial debut. Chem Engr 114(8):12

    Google Scholar 

  48. Wilke T, Pruze U, Vorlop KD (2006) Biocatalytic and catalytic routes for the production of bulk and fine chemicals from renewable resources. In: Kamm B, Gruber PR, Kamm M (eds) Biorefineries – industrial processes and products, vol 1. Wiley-VCH, Weinheim. ISBN 3-527-31027-4

    Google Scholar 

  49. Liu D, Liu H, Sun Y, Lin R, Hao J (2010) Method for producing 1,3-propanediol using crude glycerol, a by-product from biodiesel production. http://www.freepatentsonline.com/20100028965.pdf Pub. No. 2010/0028965 A1. Accessed 8 May 2010

  50. Mu Y, Teng H, Zhang D, Wang W, Xiu Z (2006) Microbial production of 1,3-propanediol by Klebsiella pneumoniae using crude glycerol from biodiesel preparations. Biotechnol Lett 28(21):1755–1759

    Article  Google Scholar 

  51. Cameron DC, Koutsky JA (1994) Conversion of glycerol from soy diesel production to 1,3- propanediol. Final report prepared for National Biodiesel Development Board, Department of Chemical Engineering, UW-Madison, Madison, WI

    Google Scholar 

  52. CEP (2007) $100-million plant is first to produce propanediol from corn sugar. Chem Eng Prog 103(1):10

    Google Scholar 

  53. Moreira AR (1983) Acetone-butanol fermentation. In: Wise DL (ed) Organic chemicals from biomass. The Benjamin Cummind Publishing Company, Menlo Park. ISBN 0-8053-9040-5

    Google Scholar 

  54. D’Aquino R (2007) Cellulosic ethanol – tomorrow’s sustainable energy source. Chem Eng Prog 103(3):8–10

    MathSciNet  Google Scholar 

  55. Zelder O (2006) Fermentation – a versatile technology utilizing renewable resources. In: Raw material change: coal, oil, gas, biomass - where does the future lie? http://www.basf.com/group/corporate/en/function/conversions:/publish/content/innovations/events-presentations/raw-material-change/images/BASF_Expose_Dr_Zelder.pdf. Ludwigshafen, Germany, November 21–22, 2006. Accessed 8 May 2010

  56. Ondrey G (2007) A sustainable route to succinic acid. Chem Eng 114(4):18

    Google Scholar 

  57. Guettler MV, Jain MK, Soni BK (1996) Process for making succinic acid, microorganisms for use in the process and methods of obtaining the microorganisms. US Patent No. 5,504,004

    Google Scholar 

  58. Kamm B, Kamm M, Gruber PR, Kromus S (2006) Biorefinery systems – an overview. In: Kamm B, Gruber PR, Kamm M (eds) Biorefineries – industrial processes and products, vol. 1. Wiley-VCH, Weinheim, Germany. ISBN 3-527-3102

    Google Scholar 

  59. Ritter S (2006) Biorefineries get ready to deliver the goods. Chem Eng News 84(34):47

    Article  Google Scholar 

  60. Hayes DJ, Fitzpatrick S, Hayes MHB, Ross JRH (2006) The biofine process – production of levulinic acid, furfural and formic acid from lignocellulosic feedstock. In: Kamm B, Gruber PR, Kamm M (eds) Biorefineries – industrial processes and products. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. ISBN 3-527-31027-4

    Google Scholar 

  61. Tullo AH (2008) Growing plastics. Chem Eng News 86(39):21–25

    Article  Google Scholar 

  62. Vaca-Garcia C (2008) Biomaterials. In: Clark JH, Deswarte FEI (eds) Introduction to chemicals from biomass. Wiley, Chichester. ISBN 978-0-470-05805-3

    Google Scholar 

  63. Rossell CEV, Mantelatto PE, Agnelli JAM, Nascimento J (2006) Sugar-based biorefinery – technology for integrated production of Poly(3-hydroxybutyrate), sugar, and ethanol. In: Kamm B, Gruber PR, Kamm M (eds) Biorefineries – industrial processes and products, vol 1. Wiley-VCH, Weinheim. ISBN 3-527-31027-4

    Google Scholar 

  64. Snell KD, Peoples OP (2009) PHA bioplastic: a valuez-added coproduct for biomass biorefineries. Biofuels, Bioprod Biorefin 3(4):456–467

    Article  Google Scholar 

  65. Osipovs S (2008) Sampling of benzene in tar matrices from biomass gasification using two different solid-phase sorbents. Anal Bioanal Chem 391(4):1409–1417

    Article  Google Scholar 

  66. Tullo AH (2007) Firms advance chemicals from renewable resources. Chem Eng News 85(19):14

    Article  Google Scholar 

  67. Wool RP, Sun XS (2005) Bio-based polymers and composites. Elsevier Academic, Amsterdam. ISBN 0-12-763952-7

    Google Scholar 

  68. Aydogan S, Kusefoglu S, Akman U, Hortacsu O (2006) Double-bond depletion of soybean oil triglycerides with KMnO4/H2 in dense carbon dioxide. Korean J Chem Eng 23(5):704–713

    Article  Google Scholar 

  69. Holmgren J, Gosling C, Couch K, Kalnes T, Marker T, McCall M, Marinangeli R (2007) Refining biofeedstock innovations. Petrol Tech Q 12(4):119–124

    Google Scholar 

  70. Smith RA (2005) Analysis of a petrochemical and chemical industrial zone for the improvement of sustainability, M. S. Thesis. Lamar University, Beaumont, TX

    Google Scholar 

  71. DOE (2010a) Biomass multi-year program plan March 2010. Energy efficieny and renewable energy (US DOE). http://www1.eere.energy.gov/biomass/pdfs/mypp.pdf. Accessed 8 May 2010

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Debalina Sengupta PhD or Ralph W. Pike .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this entry

Cite this entry

Sengupta, D., Pike, R.W. (2012). Chemicals from Biomass. In: Chen, WY., Seiner, J., Suzuki, T., Lackner, M. (eds) Handbook of Climate Change Mitigation. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7991-9_28

Download citation

Publish with us

Policies and ethics