Biochemical Conversion of Biomass to Fuels

  • Swetha Mahalaxmi
  • Clint Williford


Biomass can provide both hydrocarbon fuels and chemical compounds such as alcohols, gums, sugars, lipid-based products, etc. Biomass-derived fuels have acquired a lot of attention during recent years because of the abundance of supply of resources and lower green house gas emissions. Grasses, agricultural residues, animal residues and waste, used oils, etc., can be used as starting materials in the production of biofuels. Ethanol and biodiesel have found greatest application and contribute significantly to fuels. However there is growing interest in other alternatives: hydrogen, methane, butanol, renewable diesel, and petroleum compatible fuels from advanced catalytic biotech processes. Characteristics of various feedstocks and fuels, processes for conversion of biomass to biofuels, the physical, chemical factors and limitations effecting the conversion of biomass to fuels are discussed in this chapter. Process parameters include pH, temperature, and residence time. Additionally, chemical parameters include carbon source, nutrients, acid and alkaline hydrolysis agents, and phenolic inhibitors and sugars generated within the process. Several limitations to bioconversion of biomass are described such as size reduction, crystallinity, by-product inhibition to fermentation, deactivation of cellulases, ethanol tolerance by yeast, and co-fermentation of various sugars. Recent innovations and future developments in recombinant DNA technology and protein engineering are aimed at overcoming limitations to bioconversion. Understanding the limitations and applying suitable biotechnological applications will support future developments for producing biofuels.


Anaerobic Digestion Switch Grass Corn Stover Steam Explosion Butanol Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Lee SY, Park JH, Jang SH et al (2008) Fermentative butanol production by Clostridia. Biotechnol Bioeng 2:209–228CrossRefGoogle Scholar
  2. 2.
    McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 1:37–46CrossRefGoogle Scholar
  3. 3.
    Shuler ML, Kargi F (2008) Bioprocess engineering basic concepts. Prentice Hall International Series, New YorkGoogle Scholar
  4. 4.
    Feldman D (1985) Wood–chemistry, ultrastructure, reactions, by D. Fengel and G. Wegener, Walter de Gruyter, Berlin and New York, 1984, 613 pp. Price: 245 DM. J Polym Sci 11:601–602Google Scholar
  5. 5.
    Chang V, Holtzapple M (2000) Fundamental factors affecting biomass enzymatic reactivity. Appl Biochem Biotechnol 1:5–37CrossRefGoogle Scholar
  6. 6.
    Saha BC (2004) Lignocellulose biodegradation and applications in biotechnology. In: Saha BC, Hayashi K (eds) Lignocellulose biodegradation. American Chemical Society, Washington, DCCrossRefGoogle Scholar
  7. 7.
    Murphy JD, McCarthy K (2005) The optimal production of biogas for use as a transport fuel in Ireland. Renewable Energy 14:2111–2127CrossRefGoogle Scholar
  8. 8.
    Kalia AK, Singh SP (1998) Horse dung as a partial substitute for cattle dung for operating family-size biogas plants in a hilly region. Bioresour Technol 1:63–66CrossRefGoogle Scholar
  9. 9.
    Tran NH, Bartlett JR, Kannangara GSK et al (2010) Catalytic upgrading of biorefinery oil from micro-algae. Fuel 2:265–274CrossRefGoogle Scholar
  10. 10.
    Jung K-W, Kim D-H, Shin H-S (2011) Fermentative hydrogen production from Laminaria japonica and optimization of thermal pretreatment conditions. Bioresour Technol 3:2745–2750CrossRefGoogle Scholar
  11. 11.
    Miao Z, Grift TE, Hansen AC et al (2011) Energy requirement for comminution of biomass in relation to particle physical properties. Ind Crops and Prod 2:504–513CrossRefGoogle Scholar
  12. 12.
    Rupar K, Sanati M (2005) The release of terpenes during storage of biomass. Biomass Bioenergy 1:29–34CrossRefGoogle Scholar
  13. 13.
    Venturi P, Gigler JK, Huisman W (1999) Economical and technical comparison between herbaceous (Miscanthus × giganteus) and woody energy crops (Salix viminalis). Renewable Energy 1–4:1023–1026CrossRefGoogle Scholar
  14. 14.
    Alvira P, Tomás-Pejó E, Ballesteros M et al (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 13:4851–4861CrossRefGoogle Scholar
  15. 15.
    Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioproducts Biorefining 1:26–40CrossRefGoogle Scholar
  16. 16.
    Taherzadeh M, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651CrossRefGoogle Scholar
  17. 17.
    Delgenes JP, Penaud V, Moletta R (2003) Pretreatments for the enhancement of anaerobic digestion of solid wastes. ChemInform 34(13). doi:10.1002/chin.200313271Google Scholar
  18. 18.
    Hartmann H, Ahring BK (2000) Increase of anaerobic degradation of particulate organic matter in full-scale biogas plants by mechanical maceration. Water Sci Technol 3:145–153Google Scholar
  19. 19.
    Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 1:10–18CrossRefGoogle Scholar
  20. 20.
    Fan LT, Gharpuray MM, Lee YH (1987) Cellulose hydrolysis. Springer, BerlinCrossRefGoogle Scholar
  21. 21.
    Mosier N, Hendrickson R, Ho N et al (2005) Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresour Technol 18:1986–1993CrossRefGoogle Scholar
  22. 22.
    Eggeman T, Elander RT (2005) Process and economic analysis of pretreatment technologies. Bioresour Technol 18:2019–2025CrossRefGoogle Scholar
  23. 23.
    Wyman CE, Dale BE, Elander RT et al (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 18:1959–1966CrossRefGoogle Scholar
  24. 24.
    Balat M (2007) Global bio-fuel processing and production trends. Energy Explor Exploitation 3:195–218CrossRefGoogle Scholar
  25. 25.
    Alzate-Gaviria LM, Sebastian PJ, Pérez-Hernández A et al (2007) Comparison of two anaerobic systems for hydrogen production from the organic fraction of municipal solid waste and synthetic wastewater. Int J Hydrogen Energy 15:3141–3146CrossRefGoogle Scholar
  26. 26.
    Park MJ, Jo JH, Park D et al (2010) Comprehensive study on a two-stage anaerobic digestion process for the sequential production of hydrogen and methane from cost-effective molasses. Int J Hydrogen Energy 12:6194–6202CrossRefGoogle Scholar
  27. 27.
    Zhu H, Stadnyk A, Béland M et al (2008) Co-production of hydrogen and methane from potato waste using a two-stage anaerobic digestion process. Bioresour Technol 11:5078–5084CrossRefGoogle Scholar
  28. 28.
    Koutrouli EC, Kalfas H, Gavala HN et al (2009) Hydrogen and methane production through two-stage mesophilic anaerobic digestion of olive pulp. Bioresour Technol 15:3718–3723CrossRefGoogle Scholar
  29. 29.
    García V, Päkkilä J, Ojamo H et al (2011) Challenges in biobutanol production: how to improve the efficiency? Renewable Sustain Energy Rev 2:964–980CrossRefGoogle Scholar
  30. 30.
    Wukovits W, Schnitzhofer W et al (2009) Fuels – hydrogen production, biomass: fermentation. In: Dyer CK, Moseley PT, Ogumi Z, Rand DAJ, Scrosati B, Garche J (eds) Encyclopedia of electrochemical power sources. Elsevier, AmsterdamGoogle Scholar
  31. 31.
    Hallenbeck PC, Ghosh D (2009) Advances in fermentative biohydrogen production: the way forward? Trends Biotechnol 5:287–297CrossRefGoogle Scholar
  32. 32.
    Shi Y, Zhao X-T, Cao P et al (2009) Hydrogen bio-production through anaerobic microorganism fermentation using kitchen wastes as substrate. Biotechnol Lett 9:1327–1333CrossRefGoogle Scholar
  33. 33.
    Yang Z, Guo R, Xu X et al (2010) Enhanced hydrogen production from lipid-extracted microalgal biomass residues through pretreatment. Int J Hydrogen Energy 18:9618–9623CrossRefGoogle Scholar
  34. 34.
    Kongjan P, Min B, Angelidaki I (2009) Biohydrogen production from xylose at extreme thermophilic temperatures (70°C) by mixed culture fermentation. Water Res 5:1414–1424CrossRefGoogle Scholar
  35. 35.
    Koskinen PEP, Lay C-H, Puhakka JA et al (2008) High-efficiency hydrogen production by an anaerobic, thermophilic enrichment culture from an Icelandic hot spring. Biotechnol Bioeng 4:665–678CrossRefGoogle Scholar
  36. 36.
    Pattra S, Sangyoka S, Boonmee M et al (2008) Bio-hydrogen production from the fermentation of sugarcane bagasse hydrolysate by Clostridium butyricum. Int J Hydrogen Energy 19:5256–5265CrossRefGoogle Scholar
  37. 37.
    Kongjan P, O-Thong S, Kotay M et al (2010) Biohydrogen production from wheat straw hydrolysate by dark fermentation using extreme thermophilic mixed culture. Biotechnol Bioeng 5:899–908Google Scholar
  38. 38.
    Prakasham RS, Brahmaiah P, Sathish T et al (2009) Fermentative biohydrogen production by mixed anaerobic consortia: Impact of glucose to xylose ratio. Int J Hydrogen Energy 23:9354–9361CrossRefGoogle Scholar
  39. 39.
    Seiffert M, Kaltschmitt M, Miranda JA (2009) The biomethane potential in Chile. Biomass Bioenergy 4:564–572CrossRefGoogle Scholar
  40. 40.
    Anand RC, Singh R (1993) A simple technique, charcoal coating around the digester, improves biogas production in winter. Bioresour Technol 2:151–152CrossRefGoogle Scholar
  41. 41.
    Bansal NK (1988) A techno-economic assessment of solar assisted biogas systems. Energy Sources 4:213–229CrossRefGoogle Scholar
  42. 42.
    Yadvika S, Sreekrishnan TR et al (2004) Enhancement of biogas production from solid substrates using different techniques–a review. Bioresour Technol 1:1–10CrossRefGoogle Scholar
  43. 43.
    Åhman M (2010) Biomethane in the transport sector–an appraisal of the forgotten option. Energy Policy 1:208–217CrossRefGoogle Scholar
  44. 44.
    Power NM, Murphy JD (2009) Which is the preferable transport fuel on a greenhouse gas basis; biomethane or ethanol? Biomass Bioenergy 10:1403–1412CrossRefGoogle Scholar
  45. 45.
    Mabee WE, Saddler JN (2009) Bioethanol from lignocellulosics: status and perspectives in Canada. Bioresour Technol 13:4806–4813Google Scholar
  46. 46.
    Goldemberg J, Coelho ST, Guardabassi P (2008) The sustainability of ethanol production from sugarcane. Energy Policy 6:2086–2097CrossRefGoogle Scholar
  47. 47.
    Almeida JRM, Modig T, Petersson A et al (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol 4:340–349CrossRefGoogle Scholar
  48. 48.
    Dodic S, Popov S, Dodic J et al (2009) Bioethanol production from thick juice as intermediate of sugar beet processing. Biomass Bioenergy 5:822–827CrossRefGoogle Scholar
  49. 49.
    Lee J-W, Koo B-W, Choi J-W et al (2008) Evaluation of waste mushroom logs as a potential biomass resource for the production of bioethanol. Bioresour Technol 8:2736–2741CrossRefGoogle Scholar
  50. 50.
    Mohanty SK, Behera S, Swain MR et al (2009) Bioethanol production from mahula (Madhuca latifolia L.) flowers by solid-state fermentation. Appl Energy 5:640–644CrossRefGoogle Scholar
  51. 51.
    Bobleter O (1994) Hydrothermal degradation of polymers derived from plants. Prog Polym Sci 5:797–841CrossRefGoogle Scholar
  52. 52.
    Garrote G, Domínguez H, Parajó JC (1999) Hydrothermal processing of lignocellulosic materials. Eur J Wood and Wood Prod 3:191–202CrossRefGoogle Scholar
  53. 53.
    Laser M, Schulman D, Allen SG et al (2002) A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol. Bioresour Technol 1:33–44CrossRefGoogle Scholar
  54. 54.
    Gregg D, Saddler J (1996) A techno-economic assessment of the pretreatment and fractionation steps of a biomass-to-ethanol process. Appl Biochem Biotechnol 1:711–727CrossRefGoogle Scholar
  55. 55.
    Mosier N, Wyman C, Dale B et al (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 6:673–686CrossRefGoogle Scholar
  56. 56.
    Bobleter O (1994) Hydrothermal degradation of polymers derived from plants. Elsevier, KidlingtonGoogle Scholar
  57. 57.
    Pan X, Xie D, Gilkes N et al (2005) Strategies to enhance the enzymatic hydrolysis of pretreated softwood with high residual lignin content. Appl Biochem Biotechnol 1:1069–1079CrossRefGoogle Scholar
  58. 58.
    Oliva J, Sáez F, Ballesteros I et al (2003) Effect of lignocellulosic degradation compounds from steam explosion pretreatment on ethanol fermentation by thermotolerant yeast Kluyveromyces marxianus. Appl Biochem Biotechnol 1:141–153CrossRefGoogle Scholar
  59. 59.
    Brownell HH, Yu EKC, Saddler JN (1986) Steam-explosion pretreatment of wood: effect of chip size, acid, moisture content and pressure drop. Biotechnol Bioeng 6:792–801CrossRefGoogle Scholar
  60. 60.
    Tengborg C, Stenberg K, Galbe M et al (1998) Comparison of SO2and H2SO4 impregnation of softwood prior to steam pretreatment on ethanol production. Appl Biochem Biotechnol 1:3–15CrossRefGoogle Scholar
  61. 61.
    Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 1:1–11CrossRefGoogle Scholar
  62. 62.
    Chisti Y (1996) Biotechnology Advances. In: Wyman CE (ed). Handbook on bioethanol: Production and utilization, Taylor & Francis, Washington, DCGoogle Scholar
  63. 63.
    Xiao W, Clarkson WW (1997) Acid solubilization of lignin and bioconversion of treated newsprint to methane. Biodegradation 1:61–66CrossRefGoogle Scholar
  64. 64.
    Benjamin MM, Woods SL, Ferguson JF (1984) Anaerobic toxicity and biodegradability of pulp mill waste constituents. Water Res 5:601–607CrossRefGoogle Scholar
  65. 65.
    Kassim EA, El-Shahed AS (1986) Enzymatic and chemical hydrolysis of certain cellulosic materials. Agric Waste 3:229–233CrossRefGoogle Scholar
  66. 66.
    Xu Z, Wang Q, Jiang Z et al (2007) Enzymatic hydrolysis of pretreated soybean straw. Biomass Bioenergy 2–3:162–167CrossRefGoogle Scholar
  67. 67.
    Silverstein RA, Chen Y, Sharma-Shivappa RR et al (2007) A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresour Technol 16:3000–3011CrossRefGoogle Scholar
  68. 68.
    Carvalheiro F, Duarte LC et al (2008) Hemicellulose biorefineries: a review on biomass pretreatments. National Institute of Science Communication and Information Resources, New Delhi, INDEGoogle Scholar
  69. 69.
    Pavlostathis SG, Gossett JM (1985) Alkaline treatment of wheat straw for increasing anaerobic biodegradability. Biotechnol Bioeng 3:334–344CrossRefGoogle Scholar
  70. 70.
    Alizadeh H, Teymouri F, Gilbert T et al (2005) Pretreatment of switchgrass by ammonia fiber explosion (AFEX). Appl Biochem Biotechnol 1:1133–1141CrossRefGoogle Scholar
  71. 71.
    Azzam AM (1989) Pretreatment of cane bagasse with alkaline hydrogen peroxide for enzymatic hydrolysis of cellulose and ethanol fermentation. J Environ Sci Health B 4:421–433CrossRefGoogle Scholar
  72. 72.
    Liu L, Sun J, Li M et al (2009) Enhanced enzymatic hydrolysis and structural features of corn stover by FeCl3 pretreatment. Bioresour Technol 23:5853–5858CrossRefGoogle Scholar
  73. 73.
    Kumar P, Barrett DM, Delwiche MJ et al (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 8:3713–3729CrossRefGoogle Scholar
  74. 74.
    Mahalaxmi S, Jackson C, Williford C et al (2010) Estimation of treatment time for microbial preprocessing of biomass. Appl Biochem Biotechnol 5:1414–1422CrossRefGoogle Scholar
  75. 75.
    Maeda RN, Serpa VI, Rocha VAL et al (2011) Enzymatic hydrolysis of pretreated sugar cane bagasse using Penicillium funiculosum and Trichoderma harzianum cellulases. Process Biochem 5:1196–1201CrossRefGoogle Scholar
  76. 76.
    Kumar R, Singh S, Singh O (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 5:377–391CrossRefGoogle Scholar
  77. 77.
    Sánchez ÓJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 13:5270–5295CrossRefGoogle Scholar
  78. 78.
    Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour Technol 1:17–24CrossRefGoogle Scholar
  79. 79.
    Aminifarshidmehr N (1996) The management of chronic suppurative otitis media with acid media solution. Otol Neurotol 1:24–25Google Scholar
  80. 80.
    Mohagheghi A, Evans K, Chou Y-C et al (2002) Cofermentation of glucose, xylose, and arabinose by genomic DNA-integrated xylose/arabinose fermenting strain of Zymomonas mobilis AX101. Appl Biochem Biotechnol 1:885–898CrossRefGoogle Scholar
  81. 81.
    Dürre P (2008) Fermentative butanol production. Ann N Y Acad Sci 1:353–362CrossRefGoogle Scholar
  82. 82.
    Dürre P (2007) Biobutanol: an attractive biofuel. Biotechnol J 12:1525–1534CrossRefGoogle Scholar
  83. 83.
    Qureshi N, Meagher MM, Hutkins RW (1999) Recovery of butanol from model solutions and fermentation broth using a silicalite/silicone membrane. J Memb Sci 1–2:115–125CrossRefGoogle Scholar
  84. 84.
    Helwani Z, Othman MR, Aziz N et al (2009) Technologies for production of biodiesel focusing on green catalytic techniques: a review. Fuel Process Technol 12:1502–1514CrossRefGoogle Scholar
  85. 85.
    Al-Zuhair S (2007) Production of biodiesel: possibilities and challenges. Biofuels Bioproducts Biorefining 1:57–66CrossRefGoogle Scholar
  86. 86.
    Miao X, Wu Q (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 6:841–846CrossRefGoogle Scholar
  87. 87.
    Schuchardt U, Sercheli R, Vargas RM (1998) Transesterification of vegetable oils: a review. J Braz Chem Soc 9(1):199–210Google Scholar
  88. 88.
    Basu HN, Norris ME (1996) Process for production of of esters for use as a diesel fuel substitute using a non-alkaline catalyst. US patent 5525126Google Scholar
  89. 89.
    Fjerbaek L, Christensen KV, Norddahl B (2009) A review of the current state of biodiesel production using enzymatic transesterification. Biotechnol Bioeng 5:1298–1315CrossRefGoogle Scholar
  90. 90.
    Al-Zuhair S, Hasan M, Ramachandran KB (2003) Kinetics of the enzymatic hydrolysis of palm oil by lipase. Process Biochem 8:1155–1163CrossRefGoogle Scholar
  91. 91.
    Panalotov I, Verger R (2000) Enzymatic reactions at interfaces:interfacial and temporal organization of enzymatic hydrolysis. In: Baszkin A, Norde W (eds) Physical chemistry of biological interfaces. Marcel Dekker, New YorkGoogle Scholar
  92. 92.
    Du W, Xu Y, Liu D et al (2004) Comparative study on lipase-catalyzed transformation of soybean oil for biodiesel production with different acyl acceptors. J Mol Catal B Enzym 3–4:125–129CrossRefGoogle Scholar
  93. 93.
    Watanabe Y, Shimada Y, Sugihara A et al (2002) Conversion of degummed soybean oil to biodiesel fuel with immobilized Candida antarctica lipase. J Mol Catal B Enzym 3–5:151–155CrossRefGoogle Scholar
  94. 94.
    Nelson DL, Cox MM (2008) Lehninger principles of biochemistry. W. H Freeman, New YorkGoogle Scholar
  95. 95.
    Banerjee S, Mudliar S, Sen R et al (2010) Commercializing lignocellulosic bioethanol: technology bottlenecks and possible remedies. Biofuels Bioproducts Biorefining 1:77–93CrossRefGoogle Scholar
  96. 96.
    Lee SK, Chou H, Ham TS et al (2008) Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr Opin Biotechnol 6:556–563CrossRefGoogle Scholar
  97. 97.
    Atsumi S, Liao JC (2008) Metabolic engineering for advanced biofuels production from Escherichia coli. Curr Opin Biotechnol 5:414–419CrossRefGoogle Scholar
  98. 98.
    Rastogi S, Dwivedi UN (2008) Manipulation of lignin in plants with special reference to O-methyltransferase. Plant Sci 3:264–277CrossRefGoogle Scholar
  99. 99.
    Jansson C, Wullschleger SD, Kalluri UC et al (2010) Phytosequestration: carbon biosequestration by plants and the prospects of genetic engineering. BioScience 9:685–696CrossRefGoogle Scholar
  100. 100.
    Wallecha A, Mishra S (2003) Purification and characterization of two [beta]-glucosidases from a thermo-tolerant yeast Pichia etchellsii. Biochim Biophys Acta 1649(1):74–84Google Scholar
  101. 101.
    Kaparaju P, Serrano M, Thomsen AB et al (2009) Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresour Technol 9:2562–2568CrossRefGoogle Scholar
  102. 102., Alternative Energy, Accessed 8 Aug 2011

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Chemical EngineeringUniversity of MississippiOxfordUSA

Personalised recommendations