Complex Systems in Finance and Econometrics

2011 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Financial Economics, Fat-Tailed Distributions

  • Markus Haas
  • Christian Pigorsch
Reference work entry

Article Outline


Definition of the Subject


Defining Fat-Tailedness

Empirical Evidence About the Tails

Some Specific Distributions

Volatility Clustering and Fat Tails

Application to Value-at-Risk

Future Directions



Asset Return GARCH Model Moment Generate Function Tail Index Tail Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


Primary Literature

  1. 1.
    Aas K, Haff IH (2006) The generalized hyperbolic skew Student's t‑distribution. J Financial Econom 4:275–309Google Scholar
  2. 2.
    Abhyankar A, Copeland LS, Wong W (1995) Moment condition failure in high frequency financial data: Evidence from the S&P 500. Appl Econom Lett 2:288–290Google Scholar
  3. 3.
    Abramson A, Cohen I (2006) State smoothing in Markov‐switching time‐frequency GARCH models. IEEE Signal Process Lett 13:377–380Google Scholar
  4. 4.
    Akgiray V, Booth GG (1988) The stable‐law model of stock returns. J Bus Econ Stat 6:51–57Google Scholar
  5. 5.
    Alexander C, Lazar E (2006) Normal mixture GARCH(1,1). Applications to exchange rate modelling. J Appl Econom 21:307–336Google Scholar
  6. 6.
    Alexander SS (1961) Price movements in speculative markets: Trends or random walks. Ind Manag Rev 2:7–25Google Scholar
  7. 7.
    Andersen TG, Bollerslev T (1998) Answering the skeptics: Yes, standard volatility models do provide accurate forecasts. Int Econ Rev 39:885–905Google Scholar
  8. 8.
    Andersen TG, Bollerslev T, Diebold FX, Ebens H (2001) The distribution of realized stock return volatility. J Financial Econ 61:43–76Google Scholar
  9. 9.
    Andersen TG, Bollerslev T, Diebold FX, Labys P (2001) The distribution of realized exchange rate volatility. J Am Stat Assoc 96:42–55Google Scholar
  10. 10.
    Andersson J (2001) On the normal inverse Gaussian stochastic volatility model. J Bus Econ Stat 19:44–54Google Scholar
  11. 11.
    Ang A, Chen J (2002) Asymmetric correlations of equity portfolios. J Financial Econ 63:443–494Google Scholar
  12. 12.
    Atkinson AC (1982) The simulation of generalized inverse Gaussian and hyperbolic random variables. SIAM J Sci Stat Comput 3:502–515Google Scholar
  13. 13.
    Azzalini A, Capitanio A (2003) Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‑distribution. J R Stat Soc Ser B 65:367–389Google Scholar
  14. 14.
    Bachelier L (1964) Theory of speculation. In: Cootner PH (ed) The random character of stock market prices. MIT Press, Cambridge, pp 17–75Google Scholar
  15. 15.
    Bai X, Russell JR, Tiao GC (2003) Kurtosis of GARCH and stochastic volatility models with non‐normal innovations. J Econom 114:349–360Google Scholar
  16. 16.
    Balanda KP, MacGillivray HL (1988) Kurtosis: A critical review. Am Stat 42:111–119Google Scholar
  17. 17.
    Barndorff‐Nielsen OE (1977) Exponentially decreasing distributions for the logarithm of particle size. Proc R Soc Lond Ser A 353:401–419Google Scholar
  18. 18.
    Barndorff‐Nielsen OE (1988) Processes of normal inverse Gaussian type. Finance Stoch 2:41–68Google Scholar
  19. 19.
    Barndorff‐Nielsen OE (1997) Normal inverse Gaussian distributions and stochastic volatility modelling. Scand J Stat 24:1–13Google Scholar
  20. 20.
    Barndorff‐Nielsen OE, Halgreen C (1977) Infinite divisibility of the hyperbolic and generalized inverse Gaussian distributions. Probab Theory Relat Fields 38:309–311Google Scholar
  21. 21.
    Barndorff‐Nielsen OE, Prause K (2001) Apparent scaling. Finance Stoch 5:103–113Google Scholar
  22. 22.
    Barndorff‐Nielsen OE, Shephard N (2001) Normal modified stable processes. Theory Prob Math Stat 65:1–19Google Scholar
  23. 23.
    Barndorff‐Nielsen OE, Shephard N (2002) Estimating quadratic variation using realized variance. J Appl Econom 17:457–477Google Scholar
  24. 24.
    Barndorff‐Nielsen OE, Shephard N (2007) Financial volatility in continuous time. Cambridge University PressGoogle Scholar
  25. 25.
    Barndorff‐Nielsen OE, Stelzer R (2005) Absolute moments of generalized hyperbolic distributions and approximate scaling of normal inverse Gaussian Lévy processes. Scand J Stat 32:617–637Google Scholar
  26. 26.
    Barndorff‐Nielsen OE, Kent J, Sørensen M (1982) Normal variance‐mean mixtures and z distributions. Int Stat Rev 50:145–159Google Scholar
  27. 27.
    Barndorff‐Nielsen OE, Blæsild P, Jensen JL, Sørensen M (1985) The fascination of sand. In: Atkinson AC, Fienberg SE (eds) A celebration of statistics. Springer, Berlin, pp 57–87Google Scholar
  28. 28.
    Barnea A, Downes DH (1973) A reexamination of the empirical distribution of stock price changes. J Am Stat Assoc 68:348–350Google Scholar
  29. 29.
    Basrak B, Davis RA, Mikosch T (2002) Regular variation of GARCH processes. Stoch Process Appl 99:95–115Google Scholar
  30. 30.
    Bauwens L, Laurent S, Rombouts JVK (2006) Multivariate GARCH models: A survey. J Appl Econom 21:79–109Google Scholar
  31. 31.
    Beale EML, Mallows CL (1959) Scale mixing of symmetric distributions with zero mean. Ann Math Stat 30:1145–1151Google Scholar
  32. 32.
    Berkes I, Horváth L, Kokoszka P (2003) Estimation of the maximal moment exponent of a GARCH(1,1) sequence. Econom Theory 19:565–586Google Scholar
  33. 33.
    Bibby BM, Sørensen M (1997) A hyperbolic diffusion model for stock prices. Finance Stoch 1:25–41Google Scholar
  34. 34.
    Bingham NH, Goldie CM, Teugels JL (1987) Regular variation. Cambridge University PressGoogle Scholar
  35. 35.
    Blanchard OJ, Watson MW (1982) Bubbles, rational expectations, and financial markets. In: Wachtel P (ed) Crises in the economic and financial structure. Lexington Books, Lexington, pp 295–315Google Scholar
  36. 36.
    Blattberg RC, Gonedes NJ (1974) A comparison of the stable and Student distributions as statistical models for stock prices. J Bus 47:244–280Google Scholar
  37. 37.
    Bollerslev T (1986) Generalized autoregressive conditional heteroskedasticity. J Econom 31:307–327Google Scholar
  38. 38.
    Bollerslev T (1987) A conditionally heteroskedastic time series model for speculative prices and rates of return. Rev Econ Stat 69:542–547Google Scholar
  39. 39.
    Bollerslev T, Kretschmer U, Pigorsch C, Tauchen G (2007) A discrete‐time model for daily S&P500 returns and realized variations: Jumps and leverage effects. J Econom (in press)Google Scholar
  40. 40.
    Boothe P, Glassman D (1987) The statistical distribution of exchange rates. J Int Econ 22:297–319Google Scholar
  41. 41.
    Bouchaud JP, Potters M (2000) Theory of financial risks. From statistical physics to risk management. Cambridge University Press, CambridgeGoogle Scholar
  42. 42.
    Box GEP, Muller ME (1958) A note on the generation of random normal deviates. Ann Math Stat 29:610–611Google Scholar
  43. 43.
    Branco MD, Dey DK (2001) A general class of multivariate skew‐elliptical distributions. J Multivar Anal 79:99–113Google Scholar
  44. 44.
    Broca DS (2004) Mixture distribution models of Indian stock returns: An empirical comparison. Indian J Econ 84:525–535Google Scholar
  45. 45.
    Brooks C, Burke SP, Heravi S, Persand G (2005) Autoregressive conditional kurtosis. J Financial Econom 3:399–421Google Scholar
  46. 46.
    Campbell J, Lo AW, MacKinlay AC (1997) The econometrics of financial markets. Princeton University Press, PrincetonGoogle Scholar
  47. 47.
    Carnero MA, Peña D, Ruiz E (2004) Persistence and kurtosis in GARCH and stochastic volatility models. J Financial Econom 2:319–342Google Scholar
  48. 48.
    Carr P, Geman H, Madan DB, Yor M (2002) The fine structure of asset returns: An empirical investigation. J Bus 75:305–332Google Scholar
  49. 49.
    Chambers JM, Mallows CL, Stuck BW (1976) A method for simulating stable random variables. J Am Stat Assoc 71:340–344Google Scholar
  50. 50.
    Chen M, An HZ (1998) A note on the stationarity and the existence of moments of the GARCH model. Stat Sin 8:505–510Google Scholar
  51. 51.
    Cherubini U, Luciano E, Vecchiato W (2004) Copula methods in finance. Wiley, New YorkGoogle Scholar
  52. 52.
    Cheung YM, Xu L (2003) Dual multivariate auto‐regressive modeling in state space for temporal signal separation. IEEE Trans Syst Man Cybern B: 33:386–398Google Scholar
  53. 53.
    Christoffersen PF, Pelletier D (2004) Backtesting value‐at‐risk: A duration‐based approach. J Financial Econom 2:84–108Google Scholar
  54. 54.
    Clark PK (1973) A subordinated stochastic process model with finite variance for speculative prices. Econometrica 41:135–155Google Scholar
  55. 55.
    Cohen I (2004) Modeling speech signals in the time‐frequency domain using GARCH. Signal Process 84:2453–2459Google Scholar
  56. 56.
    Cont R, Tankov P (2004) Financial modelling with jump processes. Chapman & Hall, Boca RatonGoogle Scholar
  57. 57.
    Corsi F, Mittnik S, Pigorsch C, Pigorsch U (2008) The volatility of realized volatility. Econom Rev 27:46–78Google Scholar
  58. 58.
    Cotter J (2005) Tail behaviour of the euro. Appl Econ 37:827–840Google Scholar
  59. 59.
    Dacorogna MM, Müller UA, Pictet OV, de Vries CG (2001) Extremal forex returns in extremely large data sets. Extremes 4:105–127Google Scholar
  60. 60.
    Dagpunar JS (1989) An easily implemented generalised inverse Gaussian generator. Commun Stat Simul 18:703–710Google Scholar
  61. 61.
    Danielsson J, de Vries CG (1997) Tail index and quantile estimation with very high frequency data. J Empir Finance 4:241–257Google Scholar
  62. 62.
    Danielsson J, de Haan L, Peng L, de Vries CG (2001) Using a bootstrap method to choose the sample fraction in tail index estimation. J Multivar Anal 76:226–248Google Scholar
  63. 63.
    de Haan L, Resnick SI, Rootzén H, de Vries CG (1989) Extremal behaviour of solutions to a stochastic difference equation with applications to ARCH processes. Stoch Process Appl 32:213–234Google Scholar
  64. 64.
    de Vries CG (1994) Stylized facts of nominal exchange rate returns. In: van der Ploeg F (ed) The handbook of international macroeconomics. Blackwell, Oxford, pp 348–389Google Scholar
  65. 65.
    Doganoglu T, Mittnik S (1998) An approximation procedure for asymmetric stable Paretian densities. Comput Stat 13:463–475Google Scholar
  66. 66.
    DuMouchel WH (1973) On the asymptotic normality of the maximum‐likelihood estimate when sampling from a stable distribution. Ann Stat 1:948–957Google Scholar
  67. 67.
    DuMouchel WH (1983) Estimating the stable index α in order to measure tail thickness: A critique. Ann Stat 11:1019–1031Google Scholar
  68. 68.
    Dyson FJ (1943) A note on kurtosis. J R Stat Soc 106:360–361Google Scholar
  69. 69.
    Eberlein E, von Hammerstein EA (2004) Generalized hyperbolic and inverse Gaussian distributions: Limiting cases and approximation of processes. In: Dalang RC, Dozzi M, Russo F (eds) Seminar on stochastic analysis, random fields and applications IV. Birkhäuser, Basel, pp 221–264Google Scholar
  70. 70.
    Eberlein E, Keller U (1995) Hyperbolic distributions in finance. Bernoulli 1:281–299Google Scholar
  71. 71.
    Eberlein E, Keller U, Prause K (1998) New insights into smile, mispricing, and value at risk: The hyperbolic model. J Bus 71:371–405Google Scholar
  72. 72.
    Embrechts P, Klüppelberg C, Mikosch T (1997) Modelling extremal events for insurance and finance. Springer, BerlinGoogle Scholar
  73. 73.
    Engle RF (1982) Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50:987–1006Google Scholar
  74. 74.
    Fama EF (1963) Mandelbrot and the stable Paretian hypothesis. J Bus 36:420–429Google Scholar
  75. 75.
    Fama EF (1965) The behavior of stock market prices. J Bus 38:34–105Google Scholar
  76. 76.
    Fama EF (1976) Foundations of finance. Basic Books, New YorkGoogle Scholar
  77. 77.
    Fama EF, Roll R (1971) Parameter estimates for symmetric stable distributions. J Am Stat Assoc 66:331–338Google Scholar
  78. 78.
    Farmer JD, Lillo F (2004) On the origin of power‐law tails in price fluctuations. Quantit Finance 4:C7–C11Google Scholar
  79. 79.
    Feller W (1950) An introduction to probability theory and its applications I. Wiley, New YorkGoogle Scholar
  80. 80.
    Feller W (1971) An introduction to probability theory and its applications II. Wiley, New YorkGoogle Scholar
  81. 81.
    Fernández C, Steel MFJ (1998) On Bayesian modeling of fat tails and skewness. J Am Stat Assoc 93:359–371Google Scholar
  82. 82.
    Finucan HM (1964) A note on kurtosis. J R Stat Soc Ser B 26:111–112Google Scholar
  83. 83.
    Gabaix X, Gopikrishnan P, Plerou V, Stanley E (2007) A unified econophysics explanation for the power‐law exponents of stock market activity. Physica A 382:81–88Google Scholar
  84. 84.
    Gabaix X, Gopikrishnan P, Plerou V, Stanley HE (2003) A theory of power‐law distributions in financial market fluctuations. Nature 423:267–270Google Scholar
  85. 85.
    Gabaix X, Gopikrishnan P, Plerou V, Stanley HE (2006) Institutional investors and stock market volatility. Quart J Econ 121:461–504Google Scholar
  86. 86.
    Galbraith JW, Zernov S (2004) Circuit breakers and the tail index of equity returns. J Financial Econom 2:109–129Google Scholar
  87. 87.
    Gallant AR, Tauchen G (1996) Which moments to match? Econom Theory 12:657–681Google Scholar
  88. 88.
    Gerber HU, Shiu ESW (1994) Option pricing by Esscher transforms. Trans Soc Actuar 46:99–140Google Scholar
  89. 89.
    Ghose D, Kroner KF (1995) The relationship between GARCH and symmetric stable processes: Finding the source of fat tails in financial data. J Empir Finance 2:225–251Google Scholar
  90. 90.
    Goldie CM (1991) Implicit renewal theory and tails of solutions of random equations. Ann Appl Probab 1:126–166Google Scholar
  91. 91.
    Gopikrishnan P, Meyer M, Amaral LAN, Stanley HE (1998) Inverse cubic law for the distribution of stock price variations. Eur Phys J B 3:139–140Google Scholar
  92. 92.
    Gopikrishnan P, Plerou V, Amaral LAN, Meyer M, Stanley HE (1999) Scaling of the distribution of fluctuations of financial market indices. Phys Rev E 60:5305–5316Google Scholar
  93. 93.
    Gourieroux C, Jasiak J (1998) Truncated maximum likelihood, goodness of fit tests and tail analysis. Working Paper, CRESTGoogle Scholar
  94. 94.
    Gray JB, French DW (1990) Empirical comparisons of distributional models for stock index returns. J Bus Finance Account 17:451–459Google Scholar
  95. 95.
    Gut A (2005) Probability: A graduate course. Springer, New YorkGoogle Scholar
  96. 96.
    Haas M, Mittnik S, Paolella MS (2004) Mixed normal conditional heteroskedasticity. J Financial Econom 2:211–250Google Scholar
  97. 97.
    Haas M, Mittnik S, Paolella MS (2004) A new approach to Markov‐switching GARCH models. J Financial Econom 2:493–530Google Scholar
  98. 98.
    Hagerman RL (1978) More evidence on the distribution of security returns. J Finance 33:1213–1221Google Scholar
  99. 99.
    Hall JA, Brorsen W, Irwin SH (1989) The distribution of futures prices: A test of the stable Paretian and mixture of normals hypotheses. J Financial Quantit Anal 24:105–116Google Scholar
  100. 100.
    Hall P (1982) On some simple estimates of an exponent of regular variation. J R Stat Soc Ser B 44:37–42Google Scholar
  101. 101.
    Hamilton JD (1989) A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica 57:357–384Google Scholar
  102. 102.
    Hansen BE (1994) Autoregressive conditional density estimation. Int Econ Rev 35:705–730Google Scholar
  103. 103.
    Harrison P (1996) Similarities in the distribution of stock market price changes between the eighteenth and twentieth centuries. J Bus 71:55–79Google Scholar
  104. 104.
    Hazan A, Landsman Z, Makov UE (2003) Robustness via a mixture of exponential power distributions. Comput Stat Data Anal 42:111–121Google Scholar
  105. 105.
    He C, Teräsvirta T (1999) Fourth moment structure of the GARCH(\({p,q}\)) process. Econom Theory 15:824–846Google Scholar
  106. 106.
    Hill BM (1975) A simple general approach to inference about the tail of a distribution. Ann Stat 3:1163–1174Google Scholar
  107. 107.
    Hols MCAB, de Vries CG (1991) The limiting distribution of extremal exchange rate returns. J Appl Econom 6:287–302Google Scholar
  108. 108.
    Hsieh DA (1989) Modeling heteroskedasticity in daily foreign‐exchange rates. J Bus Econ Stat 7:307–317Google Scholar
  109. 109.
    Hsu DA, Miller RB, Wichern DW (1974) On the stable Paretian behavior of stock‐market prices. J Am Stat Assoc 69:108–113Google Scholar
  110. 110.
    Huisman R, Koedijk KG, Kool CJM, Palm F (2001) Tail‐index estimates in small samples. J Bus Econ Stat 19:208–216Google Scholar
  111. 111.
    Huisman R, Koedijk KG, Kool CJM, Palm F (2002) The tail‐fatness of FX returns reconsidered. Economist 150:299–312Google Scholar
  112. 112.
    Hyung N, de Vries CG (2005) Portfolio diversification effects of downside risk. J Financial Econom 3:107–125Google Scholar
  113. 113.
    Jansen DW, de Vries CG (1991) On the frequency of large stock returns: Putting booms and busts into perspective. Rev Econ Stat 73:18–24Google Scholar
  114. 114.
    Jensen MB, Lunde A (2001) The NIG‐S&ARCH model: A fat‐tailed, stochastic, and autoregressive conditional heteroskedastic volatility model. Econom J 4:319–342Google Scholar
  115. 115.
    Jondeau E, Rockinger M (2003) Testing for differences in the tails of stock‐market returns. J Empir Finance 10:559–581Google Scholar
  116. 116.
    Jones MC, Faddy MJ (2003) A skew extension of the t‐distribution, with applications. J R Stat Soc Ser B 65:159–174Google Scholar
  117. 117.
    Jørgensen B (1982) Statistical properties of the generalized inverse gaussian distribution. Springer, BerlinGoogle Scholar
  118. 118.
    Jorion P (2006) Value at risk: The new benchmark for controlling derivatives risk. McGraw‐Hill, New YorkGoogle Scholar
  119. 119.
    Kaizoji T, Kaizoji M (2003) Empirical laws of a stock price index and a stochastic model. Adv Complex Syst 6:303–312Google Scholar
  120. 120.
    Kanter M (1975) Stable densities under change of scale and total variation inequalities. J Am Stat Assoc 3:697–707Google Scholar
  121. 121.
    Kaplansky I (1945) A common error concerning kurtosis. J Am Stat Assoc 40:259Google Scholar
  122. 122.
    Karanasos M (1999) The second moment and the autocovariance function of the squared errors of the GARCH model. J Econom 90:63–76Google Scholar
  123. 123.
    Kearns P, Pagan A (1997) Estimating the density tail index for financial time series. Rev Econ Stat 79:171–175Google Scholar
  124. 124.
    Kesten H (1973) Random difference equations and renewal theory for products of random matrices. Acta Math 131:207–248Google Scholar
  125. 125.
    Koedijk KG, Schafgans MMA, de Vries CG (1990) The tail index of exchange rate returns. J Int Econ 29:93–108Google Scholar
  126. 126.
    Koedijk KG, Stork PA, de Vries CG (1992) Differences between foreign exchange rate regimes: The view from the tails. J Int Money Finance 11:462–473Google Scholar
  127. 127.
    Kogon SM, Williams DB (1998) Characteristic function based estimation of stable distribution parameters. In: Adler RJ, Feldman RE, Taqqu MS (eds) A practical guide to heavy tails: Statistical techniques and applications. Birkhäuser, Basel, pp 311–335Google Scholar
  128. 128.
    Komunjer I (2007) Asymmetric power distribution: Theory and applications to risk management. J Appl Econom 22:891–921Google Scholar
  129. 129.
    Kon SJ (1984) Models of stock returns: A comparison. J Finance 39:147–165Google Scholar
  130. 130.
    Koponen I (1995) Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process. Phys Rev E 52:1197–1199Google Scholar
  131. 131.
    Koutrouvelis IA (1980) Regression‐type estimation of the parameters of stable laws. J Am Stat Assoc 75:918–928Google Scholar
  132. 132.
    Küchler U, Neumann K, Sørensen M, Streller A (1999) Stock returns and hyperbolic distributions. Math Comput Model 29:1–15Google Scholar
  133. 133.
    Kupiec PH (1995) Techniques for verifying the accuracy of risk management models. J Deriv 3:73–84Google Scholar
  134. 134.
    Laherrère J, Sornette D (1998) Stretched exponential distributions in nature and economy: “fat tails” with characteristic scales. Eur Phys J B 2:525–539Google Scholar
  135. 135.
    Lau AHL, Lau HS, Wingender JR (1990) The distribution of stock returns: New evidence against the stable model. J Bus Econ Stat 8:217–223Google Scholar
  136. 136.
    Leadbetter MR, Lindgren G, Rootzén H (1983) Extremes and related properties of random sequences and processes. Springer, New YorkGoogle Scholar
  137. 137.
    LeBaron B (2001) Stochastic volatility as a simple generator of apparent financial power laws and long memory. Quantit Finance 1:621–631Google Scholar
  138. 138.
    Lee SW, Hansen BE (1994) Asymptotic theory for the GARCH(1,1) quasi‐maximum likelihood estimator. Econom Theory 10:29–52Google Scholar
  139. 139.
    Ling S, McAleer M (2002) Necessary and sufficient moment conditions for the GARCH(\({r,s}\)) and asymmetric power GARCH(\({r,s}\)) models. Econom Theory 18:722–729Google Scholar
  140. 140.
    Liu JC (2006) On the tail behaviors of a family of GARCH processes. Econom Theory 22:852–862Google Scholar
  141. 141.
    Liu JC (2006) On the tail behaviors of Box–Cox transformed threshold GARCH(1,1) processes. Stat Probab Lett 76:1323–1330Google Scholar
  142. 142.
    Longin FM (1996) The asymptotic distribution of extreme stock market returns. J Bus 69:383–408Google Scholar
  143. 143.
    Longin FM (2005) The choice of the distribution of asset returns: How extreme value theory can help? J Bank Finance 29:1017–1035Google Scholar
  144. 144.
    Loretan M, Phillips PCB (1994) Testing the covariance stationarity of heavy‐tailed time series. J Empir Finance 1:211–248Google Scholar
  145. 145.
    Lux T (1996) The stable Paretian hypothesis and the frequency of large returns: An examination of major German stocks. Appl Financial Econ 6:463–475Google Scholar
  146. 146.
    Lux T (2000) On moment condition failure in German stock returns: An application of recent advances in extreme value statistics. Empir Econ 25:641–652Google Scholar
  147. 147.
    Lux T (2001) The limiting extremal behaviour of speculative returns: An analysis of intra‐daily data from the Frankfurt stock exchange. Appl Financial Econ 11:299–315Google Scholar
  148. 148.
    Lux T, Sornette D (2002) On rational bubbles and fat tails. J Money Credit Bank 34:589–610Google Scholar
  149. 149.
    Madan DB, Carr PP, Chang EC (1998) The variance gamma process and option pricing. Eur Finance Rev 2:79–105Google Scholar
  150. 150.
    Madan DB, Milne F (1991) Option pricing with v. g. martingale components. Math Finance 1:39–55Google Scholar
  151. 151.
    Madan DB, Seneta E (1990) The variance gamma (v. g.) model for share market returns. J Bus 63(4):511–524Google Scholar
  152. 152.
    Malevergne Y, Pisarenko V, Sornette D (2005) Empirical distributions of stock returns: Between the stretched exponential and the power law? Quantit Finance 5:379–401Google Scholar
  153. 153.
    Malevergne Y, Pisarenko V, Sornette D (2006) On the power of generalized extreme value (GEV) and generalized Pareto distribution (GDP) estimators for empirical distributions of stock returns. Appl Financial Econ 16:271–289Google Scholar
  154. 154.
    Mandelbrot B (1963) New methods in statistical economics. J Polit Econ 71:421–440Google Scholar
  155. 155.
    Mandelbrot B (1963) The variation of certain speculative prices. J Bus 36:394–419Google Scholar
  156. 156.
    Mandelbrot B (1967) The variation of some other speculative prices. J Bus 40:393–413Google Scholar
  157. 157.
    Mantegna RN, Stanley HE (1994) tic process with ultraslow convergence to a Gaussian: The truncated Lévy flight. Phys Rev Lett 73:2946–2949Google Scholar
  158. 158.
    Marsaglia G, Marshall AW, Proschan F (1965) Moment crossings as related to density crossings. J R Stat Soc Ser B 27:91–93Google Scholar
  159. 159.
    Mason DM (1982) Laws of large numbers for sums of extreme values. Ann Probab 10:754–764Google Scholar
  160. 160.
    Matia K, Amaral LAN, Goodwin SP, Stanley HE (2002) Different scaling behaviors of commodity spot and future prices. Phys Rev E 66:045103Google Scholar
  161. 161.
    Matia K, Pal M, Salunkay H, Stanley HE (2004) Scale‐dependent price fluctuations for the Indian stock market. Europhys Lett 66:909–914Google Scholar
  162. 162.
    McCulloch JH (1997) Measuring tail thickness to estimate the stable index α: A critique. J Bus Econ Stat 15:74–81Google Scholar
  163. 163.
    McCulloch JH (1986) Simple consistent estimators of stable distribution parameters. Commun Stat Simul 15:1109–1136Google Scholar
  164. 164.
    McDonald JB (1996) Probability distributions for financial models. In: Maddala GS, Rao CR (eds) Handbook of statistics 14: Statistical methods in finance. Elsevier, Amsterdam, pp 427–461Google Scholar
  165. 165.
    McLachlan GJ, Peel D (2000) Finite mixture models. Wiley, New YorkGoogle Scholar
  166. 166.
    Mikosch T, Stărică C (2004) Nonstationarities in financial time series, the long‐range dependence, and the IGARCH effects. Rev Econ Stat 86:378–390Google Scholar
  167. 167.
    Mikosch T, Stărică C (2000) Limit theory for the sample autocorrelations and extremes of a GARCH(1,1) process. Ann Stat 28:1427–1451Google Scholar
  168. 168.
    Milhøj A (1985) The moment structure of ARCH processes. Scand J Stat 12:281–292Google Scholar
  169. 169.
    Mittnik S, Rachev ST (1993) Modeling asset retunrs with alternative stable distributions. Econom Rev 12:261–330Google Scholar
  170. 170.
    Mizuno T, Kurihara S, Takayasu M, Takayasu H (2003) Analysis of high‐resolution foreign exchange data of USD‑JPY for 13 years. Physica A 324:296–302Google Scholar
  171. 171.
    Nelson DB (1990) Stationarity and persistence in the GARCH(1,1) model. Econom Theory 6:318–334Google Scholar
  172. 172.
    Nelson DB (1991) Conditional heteroskedasticity in asset returns: A new approach. Econometrica 59:347–370Google Scholar
  173. 173.
    Nelson DB, Cao CQ (1992) Inequality constraints in the univariate GARCH model. J Bus Econ Stat 10:229–235Google Scholar
  174. 174.
    Newcomb S (1980) A generalized theory of the combination of observations so as to obtain the best result. In: Stigler SM (ed) American contributions to mathematical statistics in the nineteenth century, vol. 2. Arno, New York, pp. 343–366Google Scholar
  175. 175.
    Nolan JP (1997) Numerical calculation of stable densities and distribution functions. Commun Stat Stoch Models 13:759–774Google Scholar
  176. 176.
    Officer RR (1972) The distribution of stock returns. J Am Stat Assoc 67:807–812Google Scholar
  177. 177.
    Omran MF (1997) Moment condition failure in stock returns: UK evidence. Appl Math Finance 4:201–206Google Scholar
  178. 178.
    Osborne MFM (1959) Brownian motion in the stock market. Oper Res 7:145–173Google Scholar
  179. 179.
    Peiró A (1994) The distribution of stock returns: International evidence. Appl Financial Econ 4:431–439Google Scholar
  180. 180.
    Perry PR (1983) More evidence on the nature of the distribution of security returns. J Financial Quantit Anal 18:211–221Google Scholar
  181. 181.
    Plerou V, Gopikrishnan P, Amaral LAN, Meyer M, Stanley HE (1998) Scaling of the distribution of price fluctuations of individual companies. Phys Rev E 60:6519–6529Google Scholar
  182. 182.
    Plerou V, Gopikrishnan P, Gabaix X, Stanley E (2004) On the origin of power‐law fluctuations in stock prices. Quantit Finance 4:C11–C15Google Scholar
  183. 183.
    Pólya G, Szegö G (1976) Problems and theorems in analysis II. Springer, BerlinGoogle Scholar
  184. 184.
    Praetz PD (1972) The distribution of share price changes. J Bus 45:49–55Google Scholar
  185. 185.
    Prause K (1999) The generalized hyperbolic model: Estimation, financial derivatives, and risk measures. Ph D thesis, Albert‐Ludwigs‐Universität Freiburg i. Br.Google Scholar
  186. 186.
    Press SJ (1972) Estimation in univariate and multivariate stable distributions. J Am Stat Assoc 67:842–846Google Scholar
  187. 187.
    Raible S (2000) Lévy processes in finance: Theory, numerics, and empirical facts. Ph D thesis, Albert‐Ludwigs‐Universität Freiburg i. Br.Google Scholar
  188. 188.
    Resnick SI (1987) Extreme values, regular variation, and point processes. Springer, New YorkGoogle Scholar
  189. 189.
    Resnick SI (1997) Heavy tail modeling and teletraffic data. Ann Stat 25:1805–1849Google Scholar
  190. 190.
    Resnick SI, Stărică C (1998) Tail index estimation for dependent data. Ann Appl Probab 8:1156–1183Google Scholar
  191. 191.
    Rydberg TH (1999) Generalized hyperbolic diffusion processes with applications in finance. Math Finance 9:183–201Google Scholar
  192. 192.
    Samorodnitsky G, Taqqu MS (1994) Stable non‐gaussian random processes: Stochastic models with infinite variance. Chapman & Hall, New YorkGoogle Scholar
  193. 193.
    Sato KI (1999) Lévy processes and infinitely divisible distributions. Cambridge University Press, CambridgeGoogle Scholar
  194. 194.
    Schoutens W (2003) Lévy processes in finance: Pricing financial derivatives. Wiley, New YorkGoogle Scholar
  195. 195.
    Seneta E (1976) Regularly varying functions. Springer, BerlinGoogle Scholar
  196. 196.
    Sigman K (1999) Appendix: A primer on heavy‐tailed distributions. Queueing Syst 33:261–275Google Scholar
  197. 197.
    Silva AC, Prange RE, Yakovenko VM (2004) Exponential distribution of financial returns at mesoscopic time lags: A new stylized fact. Physica A 344:227–235Google Scholar
  198. 198.
    Silverman BW (1986) Density estimation for statistics and data analysis. Chapman & Hall, New YorkGoogle Scholar
  199. 199.
    Tsiakas I (2006) Periodic stochastic volatility and fat tails. J Financial Econom 4:90–135Google Scholar
  200. 200.
    Turner CM, Startz R, Nelson CR (1989) A Markov model of heteroskedasticity, risk, and learning in the stock market. J Financial Econ 25:3–22Google Scholar
  201. 201.
    Werner T, Upper C (2004) Time variation in the tail behavior of bund future returns. J Future Markets 24:387–398Google Scholar
  202. 202.
    Weron R (2001) Levy‐stable distributions revisited: Tail index \({> 2}\) does not exclude the Levy‐stable regime. Int J Mod Phys C 12:209–223Google Scholar

Books and Reviews

  1. 203.
    Bollerslev T, Engle RF, Nelson DB (1994) ARCH models. In: Engle RF, McFadden DL (eds) Handbook of econometrics IV. Elsevier, Amsterdam, pp 2959–3038Google Scholar
  2. 204.
    Borak S, Härdle W, Weron R (2005) Stable distributions. In: Cizek P, Härdle W, Weron R (eds) Statistical tools for finance and insurance. Springer, Berlin, pp 21–44Google Scholar
  3. 205.
    Janicki A, Weron A (1993) Simulation and chaotic behavior of α‑stable stochastic processes. Dekker, New YorkGoogle Scholar
  4. 206.
    McCulloch JH (1996) Financial applications of stable distributions. In: Maddala GS, Rao CR (eds) Handbook of statistics 14: Statistical methods in finance. Elsevier, Amsterdam, pp 393–425Google Scholar
  5. 207.
    Mikosch T (2004) Modeling dependence and tails of financial time series. In: Finkenstädt B, Rootzén H (eds) Extreme values in finance, telecommunications, and the environment. Chapman & Hall, Boca Raton, pp 185–286Google Scholar
  6. 208.
    Mittnik S, Rachev ST, Paolella MS (1998) Stable paretian modeling in finance: Some empirical and theoretical aspects. In: Adler RJ, Feldman RE, Taqqu MS (eds) A practical guide to heavy tails: Statistical techniques and applications. Birkhäuser, Basel, pp 79–110Google Scholar
  7. 209.
    Nelsen RB (2006) An introduction to copulas, 2nd edn. Springer, New YorkGoogle Scholar
  8. 210.
    Pagan A (1996) The econometrics of financial markets. J Empir Finance 3:15–102Google Scholar
  9. 211.
    Palm FC (1996) GARCH models of volatility. In: Maddala GS, Rao CR (eds) Handbook of statistics 14. Elsevier, Amsterdam, pp 209–240Google Scholar
  10. 212.
    Rachev ST, Mittnik S (2000) Stable paretian models in finance. Wiley, ChichesterGoogle Scholar
  11. 213.
    Zolotarev VM (1986) One‐dimensional stable distributions. AMS, ProvidenceGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Markus Haas
    • 1
  • Christian Pigorsch
    • 2
  1. 1.Department of StatisticsUniversity of MunichMunichGermany
  2. 2.Department of EconomicsUniversity of BonnBonnGermany