Complex Systems in Finance and Econometrics

2011 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Finance, Agent Based Modeling in

  • Sebastiano Manzan
Reference work entry

Article Outline


Definition of the Subject


The Standard RE Model

Analytical Agent-Based Models

Computational Agent-Based Models

Other Applications in Finance

Future Directions



Asset Price Risky Asset Limit Order Market Maker Asset Price Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


Primary Literature

  1. 1.
    Arifovic J (1996) The Behavior of the Exchange Rate in the Genetic Algorithm and Experimental Economies. J Political Econ 104:510–541CrossRefGoogle Scholar
  2. 2.
    Arifovic J, Gencay R (2000) Statistical properties of genetic learning in a model of exchange rate. J Econ Dyn Control 24:981–1006CrossRefGoogle Scholar
  3. 3.
    Arthur WB, Holland JH, LeBaron B, Tayler P (1997) Asset pricing under endogeneous expectations in an artificial stock market. In: Lane D, Arthur WB, Durlauf S (ed) The Economy as an Evolving Complex System II. Addison–Wesley, ReadingGoogle Scholar
  4. 4.
    Beltratti A, Margarita S (1992) Evolution of trading strategies among heterogeneous artificial economic agents. In: Wilson SW, Meyer JA, Roitblat HL (ed) From Animals to Animats II. MIT Press, Cambridge, pp 494–501Google Scholar
  5. 5.
    Boswijk HP, Hommes CH, Manzan S (2007) Behavioral heterogeneity in stock prices. J Econ Dyn Control 31:1938–1970CrossRefGoogle Scholar
  6. 6.
    Brav A, Heaton JB (2002) Competing Theories of Financial Anomalies. Rev Financ Stud 15:575–606CrossRefGoogle Scholar
  7. 7.
    Brock WA, Hommes CH (1998) Heterogeneous beliefs and and routes to chaos in a simple asset pricing model. J Econ Dyn Control 22:1235–1274CrossRefGoogle Scholar
  8. 8.
    Chen S-H, Yeh C-H (2002) On the emergence properties of artificial stock markets: the efficient market hypothesis and the rational expectations hypothesis. J Econ Behav Organ 49:217–239Google Scholar
  9. 9.
    Chiarella C (1992) The dynamics of speculative behavior. Ann Oper Res 37:101–123CrossRefGoogle Scholar
  10. 10.
    Chiarella C, He XZ (2001) Asset price and wealth dynamics under heterogeneous expectations. Quant Financ 1:509–526CrossRefGoogle Scholar
  11. 11.
    Chiarella C, He XZ (2002) Heterogeneous Beliefs, Risk and Learning in a Simple Asset Pricing Model. Comput Econ 19:95–132Google Scholar
  12. 12.
    Chiarella C, He XZ (2003) Heterogeneous beliefs, risk, and learning in a simple asset‐pricing model with a market maker. Macroecon Dyn 7:503–536Google Scholar
  13. 13.
    Chiarella C, Iori G (2002) A simulation analysis of the microstructure of double auction markets. Quant Financ 2:346–353Google Scholar
  14. 14.
    Cont R, Bouchaud JP (2000) Herd behavior and aggregate fluctuations in financial markets. Macroecon Dyn 4:170–196CrossRefGoogle Scholar
  15. 15.
    Day R, Huang W (1990) Bulls, bears and market sheep. J Econ Behav Organ 14:299–329CrossRefGoogle Scholar
  16. 16.
    de Grauwe P, Dewachter H (1993) A chaotic model of the exchange rate: The role of fundamentalists and chartists. Open Econ Rev 4:351–379CrossRefGoogle Scholar
  17. 18.
    de Grauwe P, Grimaldi M (2005) The exchange rate and its fundamentals in a complex world. Rev Int Econ 13:549–575CrossRefGoogle Scholar
  18. 17.
    de Grauwe P, Dewachter H, Embrechts M (1993) Exchange Rate Theory – Chaotic Models of Foreign Exchange Markets. Blackwell, OxfordGoogle Scholar
  19. 19.
    Farmer JD, Joshi S (2002) The price dynamics of common trading strategies. J Econ Behav Organ 49:149–171CrossRefGoogle Scholar
  20. 20.
    Frankel JA, Froot KA (1987) Using survey data to test standard propositions regarding exchange rate expectations. Am Econ Rev 77:133–153Google Scholar
  21. 21.
    Frankel JA, Froot KA (1990) Chartists, fundamentalists, and trading in the foreign exchange market. Am Econ Rev 80:181–185Google Scholar
  22. 22.
    Gaunersdorfer A (2000) Endogenous fluctuations in a simple asset pricing model with heterogeneous agents. J Econ Dyn Control 24:799–831CrossRefGoogle Scholar
  23. 23.
    Gaunersdorfer A, Hommes CH (2006) A nonlinear structural model for volatility clustering. In: Kirman A, Teyssiere G (ed) Microeconomic models for long memory in economics. Springer, Berlin, pp 265–288Google Scholar
  24. 24.
    Goldbaum D (2005) Market efficiency and learning in an endogenously unstable environment. J Econ Dyn Control 29:953–978CrossRefGoogle Scholar
  25. 25.
    Grossman SJ, Stiglitz JE (1980) On the Impossibility of Informationally Efficient Markets. Am Econ Rev 70:393–408Google Scholar
  26. 26.
    Hommes CH (2006) Heterogeneous agent models in economics and finance. In: Judd KL, Tesfatsion L (ed) Handbook of Computational Economics, vol 2: Agent-Based Computational Economics. North‐Holland, Amsterdam, pp 1109–1185Google Scholar
  27. 27.
    Kirman A (1991) Epidemics of opinion and speculative bubbles in financial markets. In: Taylor MP (ed) Money and Financial Markets. Blackwell, Oxford, pp 354–368Google Scholar
  28. 28.
    Kirman A, Teyssiere G (2001) Microeconomics models for long‐memory in the volatility of financial time series. Stud Nonlinear Dyn Econ 5:281–302CrossRefGoogle Scholar
  29. 29.
    LeBaron B (2001) Empirical regularities from interacting long and short memory investors in an agent based in stock market. IEEE Trans Evol Comput 5:442–455CrossRefGoogle Scholar
  30. 30.
    LeBaron B (2001) Evolution and time horizons in an agent based stock market. Macroecon Dyn 5:225–254CrossRefGoogle Scholar
  31. 31.
    LeBaron B (2002) Short‐memory traders and their impact on group learning in financial markets. In: Proceedings of the National Academy of Science: Colloquium, Washington DC, 99:7201–7206Google Scholar
  32. 32.
    LeBaron B (2006) Agent-based computational finance. In: Judd KL, Tesfatsion L (ed) Handbook of Computational Economics, vol 2: Agent-Based Computational Economics. North‐Holland, Amsterdam, pp 1187–1233 Google Scholar
  33. 33.
    LeBaron B, Yamamoto R (2007) Long‐memory in an order‐driven market. Physica A 383:85–89CrossRefGoogle Scholar
  34. 34.
    Levy M, Levy H, Solomon S (1994) A microscopic model of the stock market. Econ Lett 45:103–111CrossRefGoogle Scholar
  35. 35.
    Levy M, Solomon S, Levy H (2000) Microscopic Simulation of Financial Markets. Academic Press, New YorkGoogle Scholar
  36. 36.
    Licalzi M, Pellizzari P (2003) Fundamentalists clashing over the book: a study of order‐driven stock markets. Quant Financ 3:470–480CrossRefGoogle Scholar
  37. 37.
    Lucas RE (1978) Asset prices in an exchange economy. Econometrica 46:1429–1445CrossRefGoogle Scholar
  38. 38.
    Lux T (1995) Herd Behaviour, Bubbles and Crashes. Econ J 105:881–896CrossRefGoogle Scholar
  39. 39.
    Lux T (1997) Time variation of second moments from a noise trader/infection model. J Econ Dyn Control 22:1–38CrossRefGoogle Scholar
  40. 40.
    Lux T (1998) The socio‐economic dynamics of speculative markets: interacting agents, chaos, and the fat tails of return distributions. J Econ Behav Organ 33:143–165CrossRefGoogle Scholar
  41. 41.
    Lux T, Marchesi M (1999) Scaling and criticality in a stochastic multi-agent model of interacting agents. Nature 397:498–500CrossRefGoogle Scholar
  42. 42.
    Lux T, Marchesi M (2000) Volatility clustering in financial markets: A micro‐simulation of interacting agents. Int J Theoret Appl Financ 3:675–702CrossRefGoogle Scholar
  43. 43.
    Noe TH, Rebello MJ, Wang J (2003) Corporate financing: an artificial agent-based analysis. J Financ 58:943–973CrossRefGoogle Scholar
  44. 44.
    Raberto M, Cincotti S, Focardi SM, Marchesi M (2001) Agent-based simulation of a financial market. Physica A: Stat Mech Appl 299:319–327CrossRefGoogle Scholar
  45. 45.
    Raberto M, Cincotti S, Focardi SM, Marchesi M (2003) Traders'Long-Run Wealth in an Artificial Financial Market. Comput Econ 22:255–272CrossRefGoogle Scholar
  46. 46.
    Rieck C (1994) Evolutionary simulations of asset trading strategies. In: Hillebrand E, Stender J (ed) Many-Agent Simulation and Artificial Life. IOS Press, AmsterdamGoogle Scholar
  47. 47.
    Routledge BR (1999) Adaptive Learning in Financial Markets. Rev Financ Stud 12:1165–1202CrossRefGoogle Scholar
  48. 48.
    Routledge BR (2001) Genetic algorithm learning to choose and use information. Macroecon Dyn 5:303–325CrossRefGoogle Scholar
  49. 49.
    Samanidou E, Zschischang E, Stauffer D, Lux T (2007) Microscopic Models of Financial Markets. In: Schweitzer F (ed) Microscopic Models of Economic Dynamics. Springer, BerlinGoogle Scholar
  50. 50.
    Westerhoff FH (2003) Expectations driven distortions in the foreign exchange market. J Econ Behav Organ 51:389–412CrossRefGoogle Scholar
  51. 51.
    Westerhoff FH (2004) Greed, fear and stock market dynamics. Physica A: Stat Mech Appl 343:635–642Google Scholar

Books and Reviews

  1. 52.
    Anderson PW, Arrow KJ, Pines D (1989) The Economy as an Evolving Complex System. Addison‐Wesley, ReadingGoogle Scholar
  2. 53.
    Arthur WB, Durlauf SN, Lane DA (1999) The Economy as an Evolving Complex System: vol 2. Addison‐Wesley, ReadingGoogle Scholar
  3. 54.
    Blume LE, Durlauf SN (2005) The Economy as an Evolving Complex System: vol 3. Oxford University Press, OxfordGoogle Scholar
  4. 55.
    Judd KL, Tesfatsion L (2006) Handbook of Computational Economics, vol 2: Agent-based Computational Economics. North‐Holland, AmsterdamGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Sebastiano Manzan
    • 1
  1. 1.Department of Economics and FinanceBaruch College CUNYNew YorkUSA