Complex Systems in Finance and Econometrics

2011 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Econophysics, Statistical Mechanics Approach to

  • Victor M. Yakovenko
Reference work entry

Article Outline


Definition of the Subject

Historical Introduction

Statistical Mechanics of Money Distribution

Statistical Mechanics of Wealth Distribution

Data and Models for Income Distribution

Other Applications of Statistical Physics

Future Directions, Criticism, and Conclusions



Income Distribution Gini Coefficient Lorenz Curve Wealth Distribution Gibbs Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


Primary Literature

  1. 1.
    Chakrabarti BK (2005) Econophys-Kolkata: a short story. In: Chatterjee A, Yarlagadda S, Chakrabarti BK (eds) Econophysics of Wealth Distributions. Springer, Milan, pp 225–228CrossRefGoogle Scholar
  2. 2.
    Carbone A, Kaniadakis G, Scarfone AM (2007) Where do we stand on econophysics? Phys A 382:xi–xivCrossRefGoogle Scholar
  3. 3.
    Stanley HE et al (1996) Anomalous fluctuations in the dynamics of complex systems: from DNA and physiology to econophysics. Phys A 224:302–321CrossRefGoogle Scholar
  4. 4.
    Mantegna RN, Stanley HE (1999) An introduction to econophysics: correlations and complexity in finance. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  5. 5.
    Galam S (2004) Sociophysics: a personal testimony. Phys A 336:49–55CrossRefGoogle Scholar
  6. 6.
    Galan S, Gefen Y, Shapir Y (1982) Sociophysics: a new approach of sociological collective behaviour. I. Mean-behaviour description of a strike. J Math Soc 9:1–13CrossRefGoogle Scholar
  7. 7.
    Stauffer D (2004) Introduction to statistical physics outside physics. Phys A 336:1–5CrossRefGoogle Scholar
  8. 8.
    Schweitzer F (2003) Brownian agents and active particles: collective dynamics in the natural and social sciences. Springer, BerlinGoogle Scholar
  9. 9.
    Weidlich W (2000) Sociodynamics: a systematic approach to mathematical modeling in the social sciences. Harwood Academic Publishers, AmsterdamGoogle Scholar
  10. 10.
    Chakrabarti BK, Chakraborti A, Chatterjee A (eds) (2006) Econophysics and sociophysics: trends and perspectives. Wiley-VCH, BerlinGoogle Scholar
  11. 11.
    Ball P (2002) The physical modelling of society: a historical perspective. Phys A 314:1–14CrossRefGoogle Scholar
  12. 12.
    Ball P (2004) Critical mass: how one thing leads to another. Farrar, Straus and Giroux, New YorkGoogle Scholar
  13. 13.
    Boltzmann L (1905) Populäre Schriften. Barth, Leipzig, p 360Google Scholar
  14. 14.
    Austrian Central Library for Physics (2006) Ludwig Boltzmann 1844–1906. ISBN 3-900490-11-2. ViennaGoogle Scholar
  15. 15.
    Pareto V (1897) Cours d'Économie Politique. L'Université de LausanneGoogle Scholar
  16. 16.
    Mirowski P (1989) More heat than light: economics as social physics, physics as nature's economics. Cambridge University Press, CambridgeGoogle Scholar
  17. 17.
    Majorana E (1942) Il valore delle leggi statistiche nella fisica e nelle scienze sociali. Scientia 36:58–66 (English translation by Mantegna RN in: Bassani GF (ed) (2006) Ettore Majorana Scientific Papers. Springer, Berlin, pp 250–260)Google Scholar
  18. 18.
    Montroll EW, Badger WW (1974) Introduction to quantitative aspects of social phenomena. Gordon and Breach, New YorkGoogle Scholar
  19. 19.
    Föllmer H (1974) Random economies with many interacting agents. J Math Econ 1:51–62Google Scholar
  20. 20.
    Blume LE (1993) The statistical mechanics of strategic interaction. Games Econ Behav 5:387–424CrossRefGoogle Scholar
  21. 21.
    Foley DK (1994) A statistical equilibrium theory of markets. J Econ Theory 62:321–345CrossRefGoogle Scholar
  22. 22.
    Durlauf SN (1997) Statistical mechanics approaches to socioeconomic behavior. In: Arthur WB, Durlauf SN, Lane DA (eds) The Economy as a Complex Evolving System II. Addison-Wesley, Redwood City, pp 81–104Google Scholar
  23. 23.
    Anderson PW, Arrow KJ, Pines D (eds) (1988) The economy as an evolving complex system. Addison-Wesley, ReadingGoogle Scholar
  24. 24.
    Rosser JB (2008) Econophysics. In: Blume LE, Durlauf SN (eds) New Palgrave Dictionary of Economics, 2nd edn. Macmillan, London (in press)Google Scholar
  25. 25.
    Drăgulescu AA, Yakovenko VM (2000) Statistical mechanics of money. Europ Phys J B 17:723–729Google Scholar
  26. 26.
    Chakraborti A, Chakrabarti BK (2000) Statistical mechanics of money: how saving propensity affects its distribution. Europ Phys J B 17:167–170CrossRefGoogle Scholar
  27. 27.
    Bouchaud JP, Mézard M (2000) Wealth condensation in a simple model of economy. Phys A 282:536–545Google Scholar
  28. 28.
    Wannier GH (1987) Statistical physics. Dover, New YorkGoogle Scholar
  29. 29.
    Lopez-Ruiz R, Sanudo J, Calbet X (2007) Geometrical derivation of the Boltzmann factor. Available via DIALOG. Accessed 1 Jul 2008
  30. 30.
    Lopez-Ruiz R, Sanudo J, Calbet X (2007) On the equivalence of the microcanonical and the canonical ensembles: a geometrical approach. Available via DIALOG. Accessed 1 Jul 2008
  31. 31.
    Anglin P (2005) Econophysics of wealth distributions: a comment. In: Chatterjee A, Yarlagadda S, Chakrabarti BK (eds) Econophysics of wealth distributions. Springer, New York, pp 229–238CrossRefGoogle Scholar
  32. 32.
    Lux T (2005) Emergent statistical wealth distributions in simple monetary exchange models: a critical review. In: Chatterjee A, Yarlagadda S, Chakrabarti BK (eds) Econophysics of wealth distributions. Springer, Milan, pp 51–60CrossRefGoogle Scholar
  33. 33.
    Gallegati M, Keen S, Lux T, Ormerod P (2006) Worrying trends in econophysics. Phys A 370:1–6CrossRefGoogle Scholar
  34. 34.
    Lux T (2008) Applications of statistical physics in finance and economics. In: Rosser JB (ed) Handbook of complexity research. Edward Elgar, Cheltenham, UK and Northampton, MA (in press)Google Scholar
  35. 35.
    Computer animation videos of money-transfer models. Accessed 1 Jul 2008
  36. 36.
    Wright I (2007) Computer simulations of statistical mechanics of money in mathematica. Available via DIALOG. Accessed 1 Jul 2008
  37. 37.
    McConnell CR, Brue SL (1996) Economics: principles, problems, and policies. McGraw-Hill, New YorkGoogle Scholar
  38. 38.
    Patriarca M, Chakraborti A, Kaski K, Germano G (2005) Kinetic theory models for the distribution of wealth: Power law from overlap of exponentials. In: Chatterjee A, Yarlagadda S, Chakrabarti BK (eds) Econophysics of wealth distributions. Springer, Milan, pp 93–110CrossRefGoogle Scholar
  39. 39.
    Bennati E (1988) Un metodo di simulazione statistica per l'analisi della distribuzione del reddito. Rivista Internazionale di Scienze Economiche e Commerciali 35:735–756Google Scholar
  40. 40.
    Bennati E (1993) Il metodo di Montecarlo nell'analisi economica. Rassegna di Lavori dell'ISCO (Istituto Nazionale per lo Studio della Congiuntura), Anno X 4:31–79Google Scholar
  41. 41.
    Scalas E, Garibaldi U, Donadio S (2006) Statistical equilibrium in simple exchange games I: methods of solution and application to the Bennati–Drăgulescu–Yakovenko (BDY) game. Europ Phys J B 53:267–272CrossRefGoogle Scholar
  42. 42.
    Mimkes J (2000) Society as a many-particle system. J Therm Anal Calorim 60:1055–1069CrossRefGoogle Scholar
  43. 43.
    Mimkes J (2005) Lagrange principle of wealth distribution. In: Chatterjee A, Yarlagadda S, Chakrabarti BK (eds) Econophysics of wealth distributions. Springer, Milan, pp 61–69CrossRefGoogle Scholar
  44. 44.
    Shubik M (1999) The theory of money and financial institutions, vol 2. MIT Press, Cambridge, p 192Google Scholar
  45. 45.
    Mandelbrot B (1960) The Pareto-Lévy law and the distribution of income. Int Econ Rev 1:79–106CrossRefGoogle Scholar
  46. 46.
    Braun D (2001) Assets and liabilities are the momentum of particles and antiparticles displayed in Feynman-graphs. Phys A 290:491–500CrossRefGoogle Scholar
  47. 47.
    Fischer R, Braun D (2003) Transfer potentials shape and equilibrate monetary systems. Phys A 321:605–618CrossRefGoogle Scholar
  48. 48.
    Fischer R, Braun D (2003) Nontrivial bookkeeping: a mechanical perspective. Phys A 324:266–271CrossRefGoogle Scholar
  49. 49.
    Xi N, Ding N, Wang Y (2005) How required reserve ratio affects distribution and velocity of money. Phys A 357:543–555CrossRefGoogle Scholar
  50. 50.
    Ispolatov S, Krapivsky PL, Redner S (1998) Wealth distributions in asset exchange models. Europ Phys J B 2:267–276CrossRefGoogle Scholar
  51. 51.
    Angle J (1986) The surplus theory of social stratification and the size distribution of personal wealth. Soc Forces 65:293–326CrossRefGoogle Scholar
  52. 52.
    Angle J (1992) The inequality process and the distribution of income to blacks and whites. J Math Soc 17:77–98CrossRefGoogle Scholar
  53. 53.
    Angle J (1992) Deriving the size distribution of personal wealth from ‘the rich get richer, the poor get poorer’. J Math Soc 18:27–46CrossRefGoogle Scholar
  54. 54.
    Angle J (1996) How the Gamma Law of income distribution appears invariant under aggregation. J Math Soc 21:325–358CrossRefGoogle Scholar
  55. 55.
    Angle J (2002) The statistical signature of pervasive competition on wage and salary incomes. J Math Soc 26:217–270CrossRefGoogle Scholar
  56. 56.
    Angle J (2006) The Inequality Process as a wealth maximizing process. Phys A 367:388–414CrossRefGoogle Scholar
  57. 57.
    Engels F (1972) The origin of the family, private property and the state, in the light of the researches of Lewis H. Morgan. International Publishers, New YorkGoogle Scholar
  58. 58.
    Patriarca M, Chakraborti A, Kaski K (2004) Gibbs versus non-Gibbs distributions in money dynamics. Phys A 340:334–339CrossRefGoogle Scholar
  59. 59.
    Patriarca M, Chakraborti A, Kaski K (2004) Statistical model with a standard Gamma distribution. Phys Rev E 70:016104CrossRefGoogle Scholar
  60. 60.
    Repetowicz P, Hutzler S, Richmond P (2005) Dynamics of money and income distributions. Phys A 356:641–654CrossRefGoogle Scholar
  61. 61.
    Chatterjee A, Chakrabarti BK, Manna SS (2004) Pareto law in a kinetic model of market with random saving propensity. Phys A 335:155-163CrossRefGoogle Scholar
  62. 62.
    Das A, Yarlagadda S (2005) An analytic treatment of the Gibbs-Pareto behavior in wealth distribution. Phys A 353:529–538CrossRefGoogle Scholar
  63. 63.
    Chatterjee S, Chakrabarti BK, Stinchcombe RB (2005) Master equation for a kinetic model of a trading market and its analytic solution. Phys Rev E 72:026126CrossRefGoogle Scholar
  64. 64.
    Mohanty PK (2006) Generic features of the wealth distribution in ideal-gas-like markets. Phys Rev E 74:011117CrossRefGoogle Scholar
  65. 65.
    Patriarca M, Chakraborti A, Germano G (2006) Influence of saving propensity on the power-law tail of the wealth distribution. Phys A 369:723–736CrossRefGoogle Scholar
  66. 66.
    Gupta AK (2006) Money exchange model and a general outlook. Phys A 359:634–640CrossRefGoogle Scholar
  67. 67.
    Patriarca M, Chakraborti A, Heinsalu E, Germano G (2007) Relaxation in statistical many-agent economy models. Europ Phys J B 57:219–224CrossRefGoogle Scholar
  68. 68.
    Ferrero JC (2004) The statistical distribution of money and the rate of money transference. Phys A 341:575–585CrossRefGoogle Scholar
  69. 69.
    Scafetta N, Picozzi S, West BJ (2004) An out-of-equilibrium model of the distributions of wealth. Quant Financ 4:353–364CrossRefGoogle Scholar
  70. 70.
    Scafetta N, Picozzi S, West BJ (2004) A trade-investment model for distribution of wealth. Physica D 193:338–352CrossRefGoogle Scholar
  71. 71.
    Lifshitz EM, Pitaevskii LP (1981) Physical kinetics. Pergamon Press, OxfordGoogle Scholar
  72. 72.
    Ao P (2007) Boltzmann–Gibbs distribution of fortune and broken time reversible symmetry in econodynamics. Commun Nonlinear Sci Numer Simul 12:619–626CrossRefGoogle Scholar
  73. 73.
    Scafetta N, West BJ (2007) Probability distributions in conservative energy exchange models of multiple interacting agents. J Phys Condens Matter 19:065138CrossRefGoogle Scholar
  74. 74.
    Chakraborti A, Pradhan S, Chakrabarti BK (2001) A self-organising model of market with single commodity. Phys A 297:253–259CrossRefGoogle Scholar
  75. 75.
    Chatterjee A, Chakrabarti BK (2006) Kinetic market models with single commodity having price fluctuations. Europ Phys J B 54:399–404CrossRefGoogle Scholar
  76. 76.
    Ausloos M, Pekalski A (2007) Model of wealth and goods dynamics in a closed market. Phys A 373:560–568CrossRefGoogle Scholar
  77. 77.
    Silver J, Slud E, Takamoto K (2002) Statistical equilibrium wealth distributions in an exchange economy with stochastic preferences. J Econ Theory 106:417–435CrossRefGoogle Scholar
  78. 78.
    Raberto M, Cincotti S, Focardi SM, Marchesi M (2003) Traders' long-run wealth in an artificial financial market. Comput Econ 22:255–272CrossRefGoogle Scholar
  79. 79.
    Solomon S, Richmond P (2001) Power laws of wealth, market order volumes and market returns. Phys A 299:188–197CrossRefGoogle Scholar
  80. 80.
    Solomon S, Richmond P (2002) Stable power laws in variable economies; Lotka-Volterra implies Pareto-Zipf. Europ Phys J B 27:257–261CrossRefGoogle Scholar
  81. 81.
    Huang DW (2004) Wealth accumulation with random redistribution. Phys Rev E 69:057103CrossRefGoogle Scholar
  82. 82.
    Slanina F (2004) Inelastically scattering particles and wealth distribution in an open economy. Phys Rev E 69:046102CrossRefGoogle Scholar
  83. 83.
    Cordier S, Pareschi L, Toscani G (2005) On a kinetic model for a simple market economy. J Statist Phys 120:253–277CrossRefGoogle Scholar
  84. 84.
    Richmond P, Repetowicz P, Hutzler S, Coelho R (2006) Comments on recent studies of the dynamics and distribution of money. Phys A 370:43–48CrossRefGoogle Scholar
  85. 85.
    Richmond P, Hutzler S, Coelho R, Repetowicz P (2006) A review of empirical studies and models of income distributions in society. In: Chakrabarti BK, Chakraborti A Chatterjee A (eds) Econophysics and sociophysics: trends and perspectives. Wiley-VCH, BerlinGoogle Scholar
  86. 86.
    Burda Z, Johnston D, Jurkiewicz J, Kaminski M, Nowak MA, Papp G, Zahed I (2002) Wealth condensation in Pareto macroeconomies. Phys Rev E 65:026102CrossRefGoogle Scholar
  87. 87.
    Pianegonda S, Iglesias JR, Abramson G, Vega JL (2003) Wealth redistribution with conservative exchanges. Phys A 322:667–675CrossRefGoogle Scholar
  88. 88.
    Braun D (2006) Nonequilibrium thermodynamics of wealth condensation. Phys A 369:714–722CrossRefGoogle Scholar
  89. 89.
    Coelho R, Néda Z, Ramasco JJ, Santos MA (2005) A family-network model for wealth distribution in societies. Phys A 353:515–528Google Scholar
  90. 90.
    Iglesias JR, Gonçalves S, Pianegonda S, Vega JL, Abramson G (2003) Wealth redistribution in our small world. Phys A 327:12–17Google Scholar
  91. 91.
    Di Matteo T, Aste T, Hyde ST (2004) Exchanges in complex networks: income and wealth distributions. In: Mallamace F, Stanley HE (eds) The physics of complex systems (New advances and perspectives). IOS Press, Amsterdam, p 435Google Scholar
  92. 92.
    Hu MB, Jiang R, Wu QS, Wu YH (2007) Simulating the wealth distribution with a Richest-Following strategy on scale-free network. Phys A 381:467–472CrossRefGoogle Scholar
  93. 93.
    Bak P, Nørrelykke SF, Shubik M (1999) Dynamics of money. Phys Rev E 60:2528–2532Google Scholar
  94. 94.
    Her Majesty Revenue and Customs (2003) Distribution of personal wealth. Available via DIALOG. Accessed 1 Jul 2008
  95. 95.
    Drăgulescu AA, Yakovenko VM (2001) Exponential and power-law probability distributions of wealth and income in the United Kingdom and the United States. Phys A 299:213–221Google Scholar
  96. 96.
    Klass OS, Biham O, Levy M, Malcai O, Solomon S (2007) The Forbes 400, the Pareto power-law and efficient markets. Europ Phys J B 55:143–147CrossRefGoogle Scholar
  97. 97.
    Sinha S (2006) Evidence for power-law tail of the wealth distribution in India. Phys A 359:555–562CrossRefGoogle Scholar
  98. 98.
    Abul-Magd AY (2002) Wealth distribution in an ancient Egyptian society. Phys Rev E 66:057104CrossRefGoogle Scholar
  99. 99.
    Kakwani N (1980) Income Inequality and Poverty. Oxford University Press, OxfordGoogle Scholar
  100. 100.
    Champernowne DG, Cowell FA (1998) Economic inequality and income distribution. Cambridge University Press, CambridgeGoogle Scholar
  101. 101.
    Atkinson AB, Bourguignon F (eds) (2000) Handbook of income distribution. Elsevier, AmsterdamGoogle Scholar
  102. 102.
    Drăgulescu AA, Yakovenko VM (2001) Evidence for the exponential distribution of income in the USA. Europ Phys J B 20:585–589Google Scholar
  103. 103.
    Drăgulescu AA, Yakovenko VM (2003) Statistical mechanics of money, income, and wealth: a short survey. In: Garrido PL, Marro J (eds) Modeling of complex systems: seventh granada lectures, Conference Proceedings 661. American Institute of Physics, New York, pp 180–183Google Scholar
  104. 104.
    Yakovenko VM, Silva AC (2005) Two-class structure of income distribution in the USA: Exponential bulk and power-law tail. In: Chatterjee A, Yarlagadda S, Chakrabarti BK (eds) Econophysics of wealth distributions. Springer, Milan, pp 15–23CrossRefGoogle Scholar
  105. 105.
    Silva AC, Yakovenko VM (2005) Temporal evolution of the ‘thermal’ and ‘superthermal’ income classes in the USA during 1983-2001. Europhys Lett 69:304–310CrossRefGoogle Scholar
  106. 106.
    Hasegawa A, Mima K, Duong-van M (1985) Plasma distribution function in a superthermal radiation field. Phys Rev Lett 54:2608–2610CrossRefGoogle Scholar
  107. 107.
    Desai MI, Mason GM, Dwyer JR, Mazur JE, Gold RE, Krimigis SM, Smith CW, Skoug RM (2003) Evidence for a suprathermal seed population of heavy ions accelerated by interplanetary shocks near 1 AU. Astrophys J 588:1149–1162CrossRefGoogle Scholar
  108. 108.
    Collier MR (2004) Are magnetospheric suprathermal particle distributions (κ functions) inconsistent with maximum entropy considerations? Adv Space Res 33:2108–2112CrossRefGoogle Scholar
  109. 109.
    Souma W (2001) Universal structure of the personal income distribution. Fractals 9:463–470CrossRefGoogle Scholar
  110. 110.
    Souma W (2002) Physics of personal income. In: Takayasu H (ed) Empirical science of financial fluctuations: the advent of econophysics. Springer, Tokyo, pp 343–352Google Scholar
  111. 111.
    Fujiwara Y, Souma W, Aoyama H, Kaizoji T, Aoki M (2003) Growth and fluctuations of personal income. Phys A 321:598–604CrossRefGoogle Scholar
  112. 112.
    Aoyama H, Souma W, Fujiwara Y (2003) Growth and fluctuations of personal and company's income. Phys A 324:352–358CrossRefGoogle Scholar
  113. 113.
    Strudler M, Petska T, Petska R (2003) An analysis of the distribution of individual income and taxes, 1979–2001. The Internal Revenue Service, Washington DC. Available via DIALOG. Accessed 1 Jul 2008
  114. 114.
    Souma W, Nirei M (2005) Empirical study and model of personal income. In: Chatterjee A, Yarlagadda S, Chakrabarti BK (eds) Econophysics of wealth distributions. Springer, Milan, pp 34–42CrossRefGoogle Scholar
  115. 115.
    Nirei M, Souma W (2007) A two factor model of income distribution dynamics. Rev Income Wealth 53:440–459CrossRefGoogle Scholar
  116. 116.
    Ferrero JC (2005) The monomodal, polymodal, equilibrium and nonequilibrium distribution of money. In: Chatterjee A, Yarlagadda S, Chakrabarti BK (eds) Econophysics of wealth distributions. Springer, Milan, pp 159–167CrossRefGoogle Scholar
  117. 117.
    Clementi F, Gallegati M (2005) Pareto's law of income distribution: evidence for Germany, the United Kingdom, the United States. In: Chatterjee A, Yarlagadda S, Chakrabarti BK (eds) Econophysics of wealth distributions. Springer, Milan, pp 3–14CrossRefGoogle Scholar
  118. 118.
    Clementi F, Gallegati M, Kaniadakis G (2007) κ-generalized statistics in personal income distribution. Europ Phys J B 57:187–193CrossRefGoogle Scholar
  119. 119.
    Clementi F, Gallegati M (2005) Power law tails in the Italian personal income distribution. Phys A 350:427–438CrossRefGoogle Scholar
  120. 120.
    Clementi F, Di Matteo T, Gallegati M (2006) The power-law tail exponent of income distributions. Phys A 370:49–53CrossRefGoogle Scholar
  121. 121.
    Rawlings PK, Reguera D, Reiss H (2004) Entropic basis of the Pareto law. Phys A 343:643–652Google Scholar
  122. 122.
    Banerjee A, Yakovenko VM, Di Matteo T (2006) A study of the personal income distribution in Australia. Phys A 370:54–59CrossRefGoogle Scholar
  123. 123.
    Gibrat R (1931) Les Inégalités Economiques. Sirely, ParisGoogle Scholar
  124. 124.
    Kalecki M (1945) On the Gibrat distribution. Econometrica 13:161–170CrossRefGoogle Scholar
  125. 125.
    Champernowne DG (1953) A model of income distribution. Econ J 63:318–351CrossRefGoogle Scholar
  126. 126.
    Milaković M (2005) Do we all face the same constraints? In: Chatterjee A, Yarlagadda S, Chakrabarti BK (eds) Econophysics of wealth distributions. Springer, Milan, pp 184–191Google Scholar
  127. 127.
    Takayasu H, Sato AH, Takayasu M (1997) Stable infinite variance fluctuations in randomly amplified Langevin systems. Phys Rev Lett 79:966–969CrossRefGoogle Scholar
  128. 128.
    Kesten H (1973) Random difference equations and renewal theory for products of random matrices. Acta Math 131:207–248Google Scholar
  129. 129.
    Fiaschi D, Marsili M (2007) Distribution of wealth: theoretical microfoundations and empirical evidence. Working paper. Avialable via DIALOG. Accessed 1 Jul 2008
  130. 130.
    Levy M, Solomon S (1996) Power laws are logarithmic Boltzmann laws. Int J Mod Phys C 7:595–751CrossRefGoogle Scholar
  131. 131.
    Sornette D, Cont R (1997) Convergent multiplicative processes repelled from zero: power laws and truncated power laws. J Phys I (France) 7:431–444CrossRefGoogle Scholar
  132. 132.
    Lydall HF (1959) The distribution of employment incomes. Econometrica 27:110–115CrossRefGoogle Scholar
  133. 133.
    Feller W (1966) An Introduction to Probability Theory and Its Applications, vol 2. Wiley, New York, p 10Google Scholar
  134. 134.
    Mimkes J, Aruka Y (2005) Carnot process of wealth distribution. In: Chatterjee A, Yarlagadda S, Chakrabarti BK (eds) Econophysics of wealth distributions. Springer, Milan, pp 70–78Google Scholar
  135. 135.
    Mimkes J (2006) A thermodynamic formulation of economics. In: Chakrabarti BK, Chakraborti A Chatterjee A (eds) Econophysics and sociophysics: trends and perspectives. Wiley-VCH, Berlin, pp 1–33CrossRefGoogle Scholar
  136. 136.
    Schelling TC (1971) Dynamic models of segregation. J Math Soc 1:143–186CrossRefGoogle Scholar
  137. 137.
    Mimkes J (1995) Binary alloys as a model for the multicultural society. J Therm Anal 43:521–537CrossRefGoogle Scholar
  138. 138.
    Mimkes J (2006) A thermodynamic formulation of social science. In: Chakrabarti BK, Chakraborti A, Chatterjee A (eds) Econophysics and sociophysics: trends and perspectives. Wiley-VCH, BerlinGoogle Scholar
  139. 139.
    Jego C, Roehner BM (2007) A physicist's view of the notion of “racism”. Available via DIALOG. Accessed 1 Jul 2008
  140. 140.
    Stauffer D, Schulze C (2007) Urban and scientific segregation: the Schelling-Ising model. Avialable via DIALOG. Accessed 1 Jul 2008
  141. 141.
    Dall'Asta L, Castellano C, Marsili M (2007) Statistical physics of the Schelling model of segregation. Available via DIALOG. Accessed 1 Jul 2008
  142. 142.
    Lim M, Metzler R, Bar-Yam Y (2007) Global pattern formation and ethnic/cultural violence. Science 317:1540–1544CrossRefGoogle Scholar
  143. 143.
    Wright I (2005) The social architecture of capitalism. Phys A 346:589–620CrossRefGoogle Scholar
  144. 144.
    Defilla S (2007) A natural value unit – Econophysics as arbiter between finance and economics. Phys A 382:42–51CrossRefGoogle Scholar
  145. 145.
    McCauley JL (2006) Response to ‘Worrying Trends in Econophysics’. Phys A 371:601–609CrossRefGoogle Scholar
  146. 146.
    Richmond P, Chakrabarti BK, Chatterjee A, Angle J (2006) Comments on ‘Worrying Trends in Econophysics’: income distribution models. In: Chatterjee A, Chakrabarti BK (eds) Econophysics of stock and other markets. Springer, Milan, pp 244–253CrossRefGoogle Scholar
  147. 147.
    Rosser JB (2006) Debating the Role of Econophysics. Working paper. Available via DIALOG. Accessed 1 Jul 2008
  148. 148.
    Rosser JB (2006) The nature and future of econophysics. In: Chatterjee A, Chakrabarti BK (eds) Econophysics of stock and other markets. Springer, Milan, pp 225–234CrossRefGoogle Scholar
  149. 149.
    Kuznets S (1955) Economic growth and income inequality. Am Econ Rev 45:1–28Google Scholar
  150. 150.
    Levy F (1987) Changes in the distribution of American family incomes, 1947 to 1984. Science 236:923–927CrossRefGoogle Scholar
  151. 151.
    Internal Revenue Service (1999) Statistics of Income–1997, Individual Income Tax Returns. Publication 1304, Revision 12-99, Washington DCGoogle Scholar
  152. 152.
    Hayes B (2002) Follow the money. Am Sci 90:400–405Google Scholar
  153. 153.
    Ball P (2006) Econophysics: culture crash. Nature 441:686–688CrossRefGoogle Scholar

Books and Reviews

  1. 154.
    McCauley J (2004) Dynamics of markets: econophysics and finance. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  2. 155.
    Farmer JD, Shubik M, Smith E (2005) Is economics the next physical science? Phys Today 58(9):37–42CrossRefGoogle Scholar
  3. 156.
    Samanidou E, Zschischang E, Stauffer D, Lux T (2007) Agent-based models of financial markets. Rep Prog Phys 70:409–450CrossRefGoogle Scholar
  4. 157.
    Econophysics forum. Avialable via DIALOG. Accessed 1 Jul 2008

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Victor M. Yakovenko
    • 1
  1. 1.Department of PhysicsUniversity of MarylandCollege ParkUSA