Extreme Environmental Events

2011 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Cryosphere Models

  • Roger G. Barry
Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-7695-6_9

Article Outline


Definition of the Subject


Snow Cover

Floating Ice


Ice Sheets

Frozen Ground and Permafrost

Future Directions



Snow Cover Active Layer Thickness Freeze Ground Atmospheric Model Intercomparison Project Outlet Glacier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


Primary Literature

  1. 1.
    Anisimov OA, Nelson FE (1996) Permafrost distribution in the Northern Hemisphere under scenarios of climate change. Glob Planet Chang 14:59–72CrossRefGoogle Scholar
  2. 2.
    Anisimov OA, Shiklomanov NI, Nelson FE (1997) Global warming and active‐layer thickness: results from transient general circulation models. Glob Planet Chang 15:61–77CrossRefGoogle Scholar
  3. 3.
    Anisimov OA, Shiklomanov NI, Nelson FE (2002) Variability of seasonal thaw depth in permafrost regions: a stochastic modeling approach. Ecol Model 153:217–227CrossRefGoogle Scholar
  4. 4.
    Armstrong RL, Brodzik MJ, Knowles K, Savoie M (2005) Global monthly EASE-Grid snow water equivalent climatology. Digital media. National Snow and Ice Data Center, BoulderGoogle Scholar
  5. 5.
    Barry RG (1996) The parameterization of surface albedo for sea ice and its snow cover. Progr Phys Geog 20:61–77Google Scholar
  6. 6.
    Barry RG (2002) The role of snow and ice in the global climate system: A review. Polar Geog 24:235–246CrossRefGoogle Scholar
  7. 7.
    Bartelt P, Lehning M (2002) A physical SNOWPACK model for the Swiss Avalanche Warning Services. Part I: Numerical model. Cold Reg Sci Technol 35(3):123–145CrossRefGoogle Scholar
  8. 8.
    Bitz CM, Lipscomb WH (1999) An energy‐conserving thermodynamic model of sea ice. J Geophys Res 105:15669–15677CrossRefGoogle Scholar
  9. 9.
    Bovis MJ, Mears AI (1976) Statistical prediction of snow avalanche runout from terrain variables in Colorado. Arct Alp Res 8:115–120CrossRefGoogle Scholar
  10. 10.
    Brun E, David P, Sudul M, Brunot G (1992) A numerical model to simulate snow cover stratigraphy for operational avalanche forecasting. J Glaciol 38:13–22Google Scholar
  11. 11.
    Budd WF, Jenssen D, Radok U (1971) Derived physical charcteristics of the Antarctic ice sheet. ANARE Interim Report Series A (IV) Glaciology PoblGoogle Scholar
  12. 12.
    Campbell WJ (1965) The wind‐driven circulation of ice and water in a polar ocean. J Geophys Res 70:3279–3301CrossRefGoogle Scholar
  13. 13.
    Coon MD, Knoke GS, Echert DS, Pritchard RS(1998) The architecture of anisotropic elastic‐plastic sea ice mechanics constitutive law. J Geophys Res 103(C10):21915–21925CrossRefGoogle Scholar
  14. 14.
    Dozier J, Painter TH (2004) Multispectral and hyperspectral remote sensing of alpine snow properties. Annu Rev Earth Planet Sci 32:465–494CrossRefGoogle Scholar
  15. 15.
    Ebert EE, Curry JA (1993) An intermediate one‐dimensional thermodynamic sea ice model for investigating ice‐atmosphere interactions. J Geophys Res 98(C6):10085–10110CrossRefGoogle Scholar
  16. 16.
    Eisenman I, Untersteiner N, Wettlaufer JS (2007) On the reliability of simulated Arctic sea ice in global climate models. Geophys Res Lett 34:L10501, doi:10.1029/2007GL029914 CrossRefGoogle Scholar
  17. 17.
    Essery R, Yang Z-L (2001) An overview of models participating in the snow model intercomparison project (SnowMIP). In: 8th Scientific Assembly of IAMAS, Innsbruck. http://www.cnrm.meteo.fr/snowmip/. Accessed 22 Aug 2008
  18. 18.
    Essery R, Long L, Pomeroy JW (1999) A distributed model of blowing snow over complex terrain. Hydrol Process 13:2423–2438CrossRefGoogle Scholar
  19. 19.
    Flato GM (2004) Sea-ice modelling. In: Bamber JL, Payne AJ (eds) Mass balance of the cryosphere: Observations and modelling of contemporary and future change. Cambridge University Press, Cambridge, pp 367–390CrossRefGoogle Scholar
  20. 20.
    Frei A, Robinson DA (1995) Evaluation of snow extent and its variability in the Atmospheric Model Intercomparison Project. J Geophys Res 103(D8):8859–8871CrossRefGoogle Scholar
  21. 21.
    Frei A, Miller JA, Robinson DA (2003) Improved simulations of snow extent in the second phase of the Atmospheric Model Intercomparison Project (AMIP-2). J Geophys Res 108(D12):4369, doi:10.1029/2002JD003030 CrossRefGoogle Scholar
  22. 22.
    Gerdes R, Koeberle C (2007) Comparison of Arctic sea ice thickness variability in IPCC Climate of the 20th Century experiments and in ocean–sea ice hindcasts. J Geophys Res 112(C4)C04S13Google Scholar
  23. 23.
    Glen J (1955) The creep of polycrystalline ice. Proc Roy Soc Lond A228:519–538CrossRefGoogle Scholar
  24. 24.
    Goodrich LE (1982) The influence of snow cover on the ground thermal regime. Can Geotech J 19:421–432Google Scholar
  25. 25.
    Hedstrom N, Pomeroy JW (1998) Measurements and modelling of snow interception in the boreal forest Hydrol. Processes 12:1611–1525Google Scholar
  26. 26.
    Heil P, Hibler WD III (2002) Modeling the high‐frequency component of Arctic sea ice drift and deformation. J Phys Oceanogr 32:3039–3057CrossRefGoogle Scholar
  27. 27.
    Hibler WD III (1979) A dynamic‐thermodynamic sea ice model. J Phys Oceanogr 9:815–846CrossRefGoogle Scholar
  28. 28.
    Hibler WD III (2004) Modelling the dynamic response of sea ice. In: Bamber JL, Payne AJ (eds) Mass balance of the cryosphere: Observations and modelling of contemporary and future change. Cambridge University Press, Cambridge, pp 227–334CrossRefGoogle Scholar
  29. 29.
    Hibler WD III, Flato GM (1992): Sea ice models. In: Trenberth K (ed) Climate System Modeling. Cambridge University Press, New York, pp 413–436Google Scholar
  30. 30.
    Hibler WD III, Schulson EM (2000) On modeling the anisotropic failure and flow of flawed sea ice. J Geophys Res 105(C7):17105–17120CrossRefGoogle Scholar
  31. 31.
    Hoelzle M, Mittaz C, Etzelmueller B, Haeberli W (2001) Surface energy fluxes and distribution models of permafrost in European mountain areas: An overview of current developments. Permafr Periglac Process 12:53–68CrossRefGoogle Scholar
  32. 32.
    Holland MM, Bitz CM, Tremblay H (2006) Future abrupt reductions in the summer Arctic sea ice. Geophys Res Lett 33:L23503. doi:10.1029/2006GL028024 CrossRefGoogle Scholar
  33. 33.
    Hopkins MA (1996) On the mesoscale interaction of lead ice and floes. J Geophys Res 101:18315–18326CrossRefGoogle Scholar
  34. 34.
    Humlum O (2007) Modeling energy balance, surface temperatures, active layer depth and permafrost thickness around Longyeardalen, Svalbard. http://www.unis.no/research/geology/Geo_research/Ole/Modelling.htm. Accessed 22 Aug 2008
  35. 35.
    Hunke EC, Dukowicz JK (1997) An elastic–viscous–plastic model for sea ice dynamics. J Phys Oceanogr 27:1849–1867CrossRefGoogle Scholar
  36. 36.
    Hunke EC, Holland MM (2007) Global atmospheric forcing data for Arctic ice-ocean modeling. J Geophys Res 112:C04S14CrossRefGoogle Scholar
  37. 37.
    Huybrechts P, de Wolde J (1999) The dynamic response of the Greenland and Antarctic ice sheets to multiple‐century climatic warming. J Climate 12:2169–2188CrossRefGoogle Scholar
  38. 38.
    Iken A, Roethlisberger H, Flotron A, Haeberli W (1983) The uplift of the Unteraargletscher at the beginning ot the melt season – a consequence of water storage at the bed. J Glaciol 30:15–25Google Scholar
  39. 39.
    Jin J, Gao X, Yang Z-L, Bales RC, Sorooshian S, Dickinson RE, Sun SF, Wu GX (1999) Comparative analyses of physically based snowmelt models for climate simulations. J Climate 12:2643–2657CrossRefGoogle Scholar
  40. 40.
    Johnson M, Gaffigan S, Hunke E, Gerdes R (2007) A comparison of Arctic Ocean sea ice concentration among the coordinated AOMIP model experiments. J Geophys Res 112:C04S11CrossRefGoogle Scholar
  41. 41.
    Jordan R (1991) A one‐dimensional temperature model for a snow cover. Technical documentation for SNTHERM Special Technical Report 91-16. US Army Cold Regions Research and Engineering Laboratory, HanoverGoogle Scholar
  42. 42.
    Kudryavtsev VA et al (1974) Fundamentals of frost forecasting in geological engineering investigations. Nauka, Moscow (in Russian). English translation US Armt Cold Regions Res Engr Lan, Hannover, Draft translation 1977Google Scholar
  43. 43.
    Kwok R, Cunningham GF, Hibler III WD (2003) Sub-daily sea ice motion and deformation from RADARSAT observations. Geophys Res Lett 30(23):2218 doi:10.1029/2003GL018723 CrossRefGoogle Scholar
  44. 44.
    Lawrence DM, Slater AG (2007) A projection of severe near‐surface permafrost degradation during the 21st century. Geophys Res Lett 32:L24401CrossRefGoogle Scholar
  45. 45.
    Lindsay RW, Stern HL (2005) A new Lagrangian model of Arctic sea ice. J Phys Oceanogr 34:272–283CrossRefGoogle Scholar
  46. 46.
    Ling F, Zhang T-J (2004) A numerical model for surface energy balance and thermal regime of the active layer and permafrost containing unfrozen water. Cold Regions Sci Technol 38:1–15CrossRefGoogle Scholar
  47. 47.
    Liston GE, Hall DK (1995) An energy‐balance model of lake-ice evolution. J Glaciol 41(138):373–382Google Scholar
  48. 48.
    Lunardini V (1988) Freezing of soil with an unfrozen water content and variable thermal properties. US Army Cold Regions Res Engineering Lab, Hanover, p 31Google Scholar
  49. 49.
    MacAyeal DR et al (1996) An ice-shelf model test based on the Ross ice shelf. Antarct Ann Glaciol 23:46–51Google Scholar
  50. 50.
    Martin Y, Gerdes R (2007) Sea ice drift variability in Arctic Ocean Model Intercomparison Project models and observations. J Geophys Res 112(C4):C04S10CrossRefGoogle Scholar
  51. 51.
    Maykut G, Untersteiner N (1971) Some results from a time‐dependent thermodynamic mode; of sea ice. J Geophys Res 76:1550–75CrossRefGoogle Scholar
  52. 52.
    McClung D, Schaerer P(2006) The Avalanche Handbook. The Mountaineers, SeattleGoogle Scholar
  53. 53.
    Meehl GA, Boer GA, Covet C, Latif M, Stouffer RJ (1997) Intercomparison makes for a better climate model. EOS 78:445–446CrossRefGoogle Scholar
  54. 54.
    Morgan VI, Jacka TH, Akermasn GJ, Clarke AL (1982) Outlet glacier and mass budget studies in Enderby, Kemp and MacRobertson Lands, Antarctica. Ann Glaciol 3L:204–210Google Scholar
  55. 55.
    Nelson FE, Outcalt DSI (1987) A computational method for prediction and regionalization of permafrrost. Arct Alp Res 19:279–88CrossRefGoogle Scholar
  56. 56.
    Nelson FE et al (1997) Estimating Active‐Layer Thickness over a Large Region: Kuparuk River Basin, Alaska, USA. Arct Alp Res 29:367–378CrossRefGoogle Scholar
  57. 57.
    Nick EM, van derr Veen CJ, Oerlemans J (2007) Controls on advance of tidewater glaciers: Results from numerical modeling applied to Columbia Glavier. J Geophys Res 112:G03S24CrossRefGoogle Scholar
  58. 58.
    Nicolsky DJ, Romanovsky VE, Alexeev VA, Lawrence DM (2007) Improved modeling of permafrost dynamics in a GCM Land Surface Scheme. Geophys Res Lett 34(8):L08591CrossRefGoogle Scholar
  59. 59.
    Nye J (1951) The flow of glaciers and ice sheets as a problem in plasticity. Proc Roy Soc Lond A 207:554–572CrossRefGoogle Scholar
  60. 60.
    Nye J (1965) The flow of a glacier in a channel of rectangular, elliptic or parabolic cross‐section. J Glaciol 5:661–690Google Scholar
  61. 61.
    Oerlemans J (2005) Extracting a climate signal from 169 glacier records. Science 308:675–677CrossRefGoogle Scholar
  62. 62.
    Oelke C et al (2003) Regional‐scale modeling of soil freeze/thaw over the Arctic drainage basin. J Geophys Res 108(D10):4314CrossRefGoogle Scholar
  63. 63.
    Oelke C, Zhang T-J (2004) A model study of circum‐Arctic soil temperatures. Permafr Periglac Process 15:103–121CrossRefGoogle Scholar
  64. 64.
    Orowan E (1949) Remarks at the joint meeting of the British Glaciological Society, the British Rheologists Club and the Institute of Metals. J Glaciol 1:231–236Google Scholar
  65. 65.
    Overland JE, McNutt SL, Salo S, Groves J, Li S (1998) Arctic sea ice as a granular plastic. J Geophys Res 104(C10):21845–21867CrossRefGoogle Scholar
  66. 66.
    Parkinson CL, Washington WM (1979) A large-scale numerical model of sea ice. J Geophys Res 84:311–337CrossRefGoogle Scholar
  67. 67.
    Paterson WSB (1994) The physics of glaciers. Pergamon, Elsevier Science, New York, p 480Google Scholar
  68. 68.
    Payne AJ et al (2000) Results from the EISMINT Phase 2 simplofoed geometry experiments: the effevts of thermomechanical coupling. J Glaciol 46(153):227–238CrossRefGoogle Scholar
  69. 69.
    Perla RI (1980) Avalanche release, motion, and impact. In: Colbeck SC (ed) Dynamics of snow and ice masses. Academic Press, New York, pp 397–462Google Scholar
  70. 70.
    Pomeroy JW, Parviainen J, Hedstrom N, Gray DM (1998) Coupled modelling of forest snow interception and sublimation. Hydrol Process 12:2317–2337CrossRefGoogle Scholar
  71. 71.
    Pritchard RS, Coon M, McPhee MG, Leavitt E (1977) Winter ice dynamics in the nearshore Beaufort Sea. AIDJEX Bull.37, Applied Physics Lab, University of Washington, Seattle, pp 37–93Google Scholar
  72. 72.
    Raymond CF (1980) Temperate valley glaciers. In: Colbeck SC (ed) Dynamics of snow and ice masses. New York. Academic Press, pp 79–139Google Scholar
  73. 73.
    Romanovsky VE, Osterkamp TE, Duzbury NS (1997) An evaluation of three numerical models used in simulations of the active layer and permafrost temperature regimes. Cold Regions Sci Technol 26:195–201CrossRefGoogle Scholar
  74. 74.
    Saito K, Kimoto M, Zhang T, Takata K, Emori S (2007) Evaluating a high‐resolution climate model: Simulated hydrothermal regimes in frozen ground regions and their change under the global warming scenario. J Geophys Res 112:F02S11CrossRefGoogle Scholar
  75. 75.
    Sazonava TS, Romanovsky V (2003) A model for regional‐scale estimation of temporal and spatial variability of active layer thickness and mean annual ground temperatures. Permafr Periglac Proc 14:125–139CrossRefGoogle Scholar
  76. 76.
    Schoof C (2007) Ice sheet grounding line dynamics: Steady states, stability, and hysteresis. J Geophys Res 112:F03S28CrossRefGoogle Scholar
  77. 77.
    Shiklomanov NI et al (2007) Comparison of model‐produced active layer fields: Results for northern Alaska. J Geophys Res 112(F2):F02S10CrossRefGoogle Scholar
  78. 78.
    Shiklomanov NI, Nelson FE (1999) Analytic representation of the active layer thickness field, Kuparuk River Basin, Alaska. Eccol Model 123:105–125CrossRefGoogle Scholar
  79. 79.
    Shiklomanov NI, Nelson FE (2002) Active‐layer mapping at regional scales: a 13-year spatial time series for the Kuparuk region, north‐central Alaska. Permafrost Periglac Proc 13:219–230CrossRefGoogle Scholar
  80. 80.
    Steele M, Flato GM (2000) Sea ice growth and modeling: A survey. In: Lewis EL et al (eds) The freshwater budget of the Arctic. Kluwer, Dordrecht, pp 549–587Google Scholar
  81. 81.
    Stroeve J et al (2007) Arctic sea ice decline: Faster than forecast. Geophys Res Lett 34:L09501, doi:10.1029/2007GL029703 CrossRefGoogle Scholar
  82. 82.
    Thomas RH (1979) The dynamics of marine ice sheets. J Glaciol 24:167–177Google Scholar
  83. 83.
    Tremblay L-B, Mysak LA (1997) Modeling sea ice as a granular material, including the dilatancy effect. J Phys Oceanogr 27:2342–2360CrossRefGoogle Scholar
  84. 84.
    Trujillo E, Ramirez JA, Elder KJ (2007) Topographic, meteorologic and canopy controls on the scaling characteristics if the spatial distribution of snow depth fields. Water Resour Res 43:W07409CrossRefGoogle Scholar
  85. 85.
    van der Veen CJ, Payne AJ (2004) Modelling land-ice dynamics. In: Bamber JL, Payne AJ (eds) Mass balance of the cryosphere: Observations and modelling of contemporary and future change. Cambridge University Press, Cambridge, pp 169–225CrossRefGoogle Scholar
  86. 86.
    Washington WM, Meehl GA (1996) High‐latitude climate change in a global coupled ocean‐atmosphere‐sea ice model with increased atmospheric CO2. J Geophys Res 101(D8):12795–12802CrossRefGoogle Scholar
  87. 87.
    Washington WM, Semtner AJ, Parkinson C, Morrison L (1976) On the development of a seasonal change sea-ice model. J Oceanogr 6:679–685CrossRefGoogle Scholar
  88. 88.
    Weertman J (1957) On the sliding of glaciers. J Glaciol 5:287–303Google Scholar
  89. 89.
    Williams PJ, Smith MW (1989} The frozen earth. Cambridge University Press, Cambridge, p 306Google Scholar
  90. 90.
    Winstral A, Marks D (2002) Simulating wind fields and snow redistribution using terrain‐based parameters to model snow accumulation and melt over a semi-arid mountain catchment. Hydrol Process 16:3585–3603CrossRefGoogle Scholar
  91. 91.
    World Meteorological Organization (2007) WMO sea ice nomenclature, no 269. WMO, GenevaGoogle Scholar
  92. 92.
    Zhang T-J, Armstrong RL, Smith J (2003) Investigation of the near‐surface soil freeze‐thaw cycle in the contiguous United States: Algorithm development and validation. J Geophys Res 108(D22):8860, GCP 21-1 – 21-14Google Scholar
  93. 93.
    Zhang T-J et al (2005) Spatial and temporal variability in active layer thickness over the Russian Arctic drainage basin. J Geophys Res 110:D16101CrossRefGoogle Scholar
  94. 94.
    Joint Commission on Oceanography and Marine Meteorology (2007) http://www.ipy-ice-portal.org/. Accessed 22 Aug 2008

Books and Reviews

  1. 95.
    Bamber JL, Payne AJ (eds) (2004) Mass balance of the cryosphere: Observations and modelling of contemporary and future change. Cambridge University Press, Cambridge, p 644Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Roger G. Barry
    • 1
  1. 1.NSIDC, CIRESUniversity of ColoradoBoulderUSA