Skip to main content

Single Column Modeling of Atmospheric Boundary Layers and the Complex Interactions with the Land Surface

  • Reference work entry
Extreme Environmental Events

Article Outline

Glossary

Definition of the Subject

Introduction

Background

Atmospheric Boundary‐Layer Structure

Modeling Basics

Local Mixing Parameterization

More Advanced Mixing Parameterizations

Intercomparison of Single Column Models for Stable Conditions

Modeling Boundary Layers over Land

Impact of Land Surface Conditions on Model Results

Summary

Acknowledgments

Bibliography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Atmospheric boundary layer:

The Atmospheric Boundary Layer (ABL) is the lower part of the atmosphere which is directly influenced by the presence of the earth's surface. As such its major characteristics are turbulence and the diurnal cycle.

Diurnal cycle:

The depth of the dry atmospheric boundary layer (ABL) can vary over land between tens of meters during night up to kilometers during daytime (see Fig. 2). Over sea the depth is often typical a few hundred meters and rather constant on the time scale of a day.

Turbulence:

Turbulence in the atmospheric boundary layer is the three‐dimensional, chaotic flow of air with time scales typically between a second and an hour. The corresponding length scales are from a millimeter up to the depth of the boundary layer (or more in the case of clouds). Turbulence in the ABL originates due to friction of the flow and heating (convection) at the surface.

Bibliography

  1. Baas P, Steeneveld GJ, van de Wiel BJH, Holtslag AAM (2006) Exploring Self‐correlation in flux‐gradient relationships for stably stratified conditions. J Atmos Sci 63:3045–3054

    Article  Google Scholar 

  2. Basu S, Holtslag AAM, van de Wiel BJH, Moene AF, Steeneveld GJ (2007) An inconvenienth ‘truth’ about using the sensible heatflux as a surface boundary condition in models under stably stratified regimes. Acta Geophys 56:88–99. doi:10.2478/s11600-007-0038-y

    Google Scholar 

  3. Beare R, MacVean M, Holtslag AAM, Cuxart J, Esau I, Golaz J-C, Jimenez M, Khairoutdinov M, Kosovic B, Lewellen D, Lund T, Lundquist J, McCabe A, Moene A, Noh Y, Raasch S, Sullivan P (2006) An intercomparison of Large–Eddy Simulations of the stable boundary layer. Bound-Layer Meteorol 118:247–272

    Article  Google Scholar 

  4. Beljaars ACM, Holtslag AAM (1991) Flux parameterization over land surfaces for atmospheric models. J Appl Meteor 30:327–341

    Article  Google Scholar 

  5. Beljaars ACM, Viterbo P (1998) Role of the boundary layer in a numerical weather prediction model. In: Holtslag AAM, Duynkerke PG (eds) Clear and Cloudy boundary layers. Royal Netherlands Academy of Arts and Sciences, Amsterdam, 372 pp

    Google Scholar 

  6. Chen F, Dudhia J (2001) Coupling an Advanced Land Surface‐Hydrology Model with the Penn State‐NCAR MM5 Modeling System. Part II: Preliminary Model Validation. Mon Wea Rev 129:587–604

    Article  Google Scholar 

  7. Cuxart J, Holtslag AAM, Beare RJ, Bazile E, Beljaars A, Cheng A, Conangla L, Ek MB, Freedman F, Hamdi R, Kerstein A, Kitagawa H, Lenderink G, Lewellen D, Mailhot J, Mauritsen T, Perov V, Schayes G, Steeneveld GJ, Svensson G, Taylor P, Weng W, Wunsch S, Xu K-M (2006) Single‐column model intercomparison for a stably stratified atmospheric boundary layer. Bound-Layer Meteorol 118: 273–303

    Article  Google Scholar 

  8. Derbyshire SH (1999) Boundary layer decoupling over cold surfaces as a physical boundary instability. Bound-Layer Meteorol 90:297–325

    Article  Google Scholar 

  9. Duynkerke PG (1991) Radiation fog: A comparison of model simulation with detailed observations. Mon Wea Rev 119:324–341

    Google Scholar 

  10. Ek MB, Holtslag AAM (2004) Influence of Soil Moisture on Boundary Layer Cloud Development. J Hydrometeor 5:86–99

    Article  Google Scholar 

  11. Garratt JR (1992) The Atmospheric Boundary Layer. Cambridge University Press, New York, 316 pp

    Google Scholar 

  12. Garratt JR, Brost RA (1981) Radiative Cooling effects within and above the nocturnal boundary layer. J Atmos Sci 38:2730–2746

    Article  Google Scholar 

  13. Holtslag AAM (2002) Atmospheric Boundary Layers: Modeling and Parameterization. In: Holton JR, Pyle J, Curry JA (eds) Encyclopedia of Atmospheric Sciences, vol 1. Academic Press, pp 253–261

    Google Scholar 

  14. Holtslag AAM (2006) GEWEX Atmospheric Boundary Layer Study (GABLS) on Stable Boundary Layers. Bound-Layer Meteorol 118:243–246

    Article  Google Scholar 

  15. Holtslag AAM, Moeng C-H (1991) Eddy diffusivity and counter‐gradient transport in the convective boundary layer. J Atmos Sci 48:1690–1698

    Article  Google Scholar 

  16. Holtslag AAM, de Bruin HAR (1988) Applied Modeling of the Nighttime Surface Energy Balance over Land. J Clim Appl Meteor 27:689–704

    Article  Google Scholar 

  17. Holtslag AAM, Ek MB (2005) Atmospheric Boundary Layer Climates and Interactions with the Land Surface. In: Encyclopedia of Hydrological Sciences. Wiley

    Google Scholar 

  18. Holtslag AAM, Steeneveld GJ, van de Wiel BJH (2007) Role of land‐surface feedback on model performance for the stable boundary layer. Bound-Layer Meteorol 125:361–376

    Article  Google Scholar 

  19. Lenderink G, Van den Hurk B, van Meijgaard E, van Ulden A, Cuijpers H (2003) Simulation of present day climate in RACMO2: First results and model developments. KNMI Technical report TR-252, 24 p

    Google Scholar 

  20. Mahrt L (1998) Stratified atmospheric boundary layers and breakdown of models. Theor Comp Fluid Phys 11:263–279

    Google Scholar 

  21. Mahrt L (1999) Stratified atmospheric boundary layers, Bound-Layer Meteorol 90:375–396

    Article  Google Scholar 

  22. Poulos GS et al (2002) CASES-99: A comprehensive investigation of the stable nocturnal boundary layer. Bull Am Meteor Soc 83:555–581

    Article  Google Scholar 

  23. ReVelle DO (1993) Chaos and “bursting” in the planetary boundary layer. J Appl Meteor 32:1169–1180

    Article  Google Scholar 

  24. Salmond JA, McKendry IG (2005) A review of turbulence in the very stable boundary layer and its implications for air quality. Prog Phys Geogr 29:171–188

    Article  Google Scholar 

  25. Sharan M, Gopalakrishnan SG (1997) Comparative Evaluation of Eddy Exchange coefficients for strong and weak wind stable boundary layer modelling. J Appl Meteor 36:545–559

    Article  Google Scholar 

  26. Steeneveld GJ (2007) Understanding and prediction of stable boundary layers over land. Ph D thesis, Wageningen University, 199 pp

    Google Scholar 

  27. Steeneveld GJ, van de Wiel BJH, Holtslag AAM (2006) Modeling the arctic stable boundary layer and its coupling to the surface. Bound-Layer Meteorol 118:357–378

    Article  Google Scholar 

  28. Steeneveld GJ, van de Wiel BJH, Holtslag AAM (2006) Modeling the Evolution of the Atmospheric Boundary Layer Coupled to the Land Surface for Three Contrasting Nights in CASES-99. J Atmos Sci 63:920–935

    Article  Google Scholar 

  29. Steeneveld GJ, Mauritsen T, de Bruijn EIF, Vila‐Guerau de Arellano J, Svensson G, Holtslag AAM (2008) Evaluation of limited area models for the representation of the diurnal cycle and contrasting nights in CASES99. J Appl Meteor Clim 47:869–887

    Google Scholar 

  30. Stull RB (1988) An introduction to Boundary‐Layer Meteorology. Kluwer, Dordrecht, 666 pp. (reprinted 1999)

    Google Scholar 

  31. Svensson G, Holtslag AAM (2006) Single column modeling of the diurnal cycle based on CASES99 data -GABLS second intercomparison project. 17th Symposium on Boundary layers and Turbulence, 22–25 May, San Diego. American Meteorol Soc, Boston, Paper 8.1 (available at http://ams.confex.com/ams/pdfpapers)

  32. Tjemkes SA, Duynkerke PG (1989) The nocturnal boundary layer: model calculations compared with observations. J Appl Meteor 28:161–175

    Article  Google Scholar 

  33. van de Wiel BJH (2002) Intermittency and Oscillations in the Stable Boundary Layer over Land. Ph D thesis, Wageningen University, 129 pp

    Google Scholar 

  34. van de Wiel BJH, Moene AF, Hartogensis OK, de Bruin HAR, Holtslag AAM (2003) Intermittent turbulence and oscillations in the stable boundary layer over land, Part III: a classification for observations during CASES99. J Atmos Sci 60:2509–2522

    Article  Google Scholar 

  35. van de Wiel BJH, Moene AF, Steeneveld GJ, Hartogensis OK, Holtslag AAM (2007) Predicting the Collapse of Turbulence in Stably Stratified Boundary Layers. Turbul Flow Combust 79:251–274

    Article  Google Scholar 

  36. Welch RM, Ravichandran MG, Cox SK (1986) Prediction of Quasi‐Periodic Oscillations in Radiation Fogs. Part I: Comparison of Simple Similarity Approaches. J Atmos Sci 43:633–651

    Article  Google Scholar 

Download references

Acknowledgments

This contribution is a compilation of earlier works by the authors, in particular the works by Holtslag [13], Steeneveld et al. [28] and Holtslag et al. [18].

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Š 2011 Springer-Verlag

About this entry

Cite this entry

Holtslag, A.A.M., Steeneveld, GJ. (2011). Single Column Modeling of Atmospheric Boundary Layers and the Complex Interactions with the Land Surface. In: Meyers, R. (eds) Extreme Environmental Events. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7695-6_45

Download citation

Publish with us

Policies and ethics