Skip to main content

Earth’s Crust and Upper Mantle, Dynamics of Solid–Liquid Systems in

  • Reference work entry
Extreme Environmental Events
  • 1281 Accesses

Article Outline

Glossary

Definition of the Subject

Introduction

General Theoretical Framework to Describe the Dynamics of Solid–Liquid Composite Systems

Overview of Applications

Elastic Wave Propagation in a Solid–Liquid Composite System

Future Directions

Acknowledgments

Bibliography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Partially molten rock:

The partially molten state is a thermodynamic state between solidus and liquidus temperatures, where both solid and liquid phases co‐exist. In the Earth's interior, partial melting of rocks occurs in the upper mantle and/or crust beneath volcanic areas.

Melt:

Liquid phase in partially molten rocks or completely molten rock above the liquidus temperature is called melt. Density of melt is about 10% lower than solid. Hence, melt phase in the partially molten rocks tend to ascend toward the Earth's surface.

Aqueous fluid:

H2O‐rich fluid. In a subducting oceanic plate, at the depths of several tens of km, aqueous fluids are released by the dehydration of hydrated minerals. Aqueous fluids, having much lower density and viscosity than melts, tend to ascend due to the buoyancy force.

Seismic tomographic image:

A number of seismometer networks have been placed on the surface of the Earth to record the seismic wave propagation from seismic sources at depths to the surface. Using the traveltime data obtained from these observations, three‐dimensional seismic velocity structures in the Earth can be obtained, with a process called seismic tomographic imaging. By using P and S wave traveltimes, \({V_\mathrm{P}}\) and \({V_\mathrm{S}}\) structures, respectively, can be obtained.

Bibliography

  1. Aharonov E, Whitehead JA, Kelemen PB, Spiegelman M (1995) Channeling instability of upwelling melt in the mantle. J Geophys Res 100:20433–20450

    Article  Google Scholar 

  2. Baba K, Chave AD, Evans RL, Hirth G, Mackie RL (2006) Mantle dynamics beneath the East Pacific Rise at 17°S: Insights from the mantle electromagnetic and tomography (MELT) experiments. J Geophys Res 111:B02101. doi:10.1029/2004JB003598

    Article  Google Scholar 

  3. Barcilon V, Richter FM (1986) Nonlinear waves in compacting media. J Fluid Mech 164:429–448

    Article  Google Scholar 

  4. Berryman JG (1980) Long‐wavelength propagation in composite elastic media 2: Ellipsoidal inclusions. J Acoust Soc Am 68:1820–1831

    Article  Google Scholar 

  5. Biot MA (1956) Theory of propagation of elastic waves in a fluid‐saturated porous solid, 1, Low‐frequency range. J Acoust Soc Am 28:168–178

    Article  Google Scholar 

  6. Biot MA (1956) Theory of propagation of elastic waves in a fluid‐saturated porous solid, 2, Higher frequency range. J Acoust Soc Am 28:179–191

    Article  Google Scholar 

  7. Drew DA (1983) Mathematical modeling of two-phase flow. Annu Rev Fluid Mech 15:261–291

    Article  Google Scholar 

  8. Duffy J, Mindlin RD (1957) Stress‐strain relations and vibrations of a granular medium. J Appl Mech 24:585–593

    Google Scholar 

  9. Hasegawa A, Yamamoto A (1994) Deep low‐frequency micro‐earthquakes in or around seismic low‐velocity zones beneath active volcanoes in northeastern Japan. Tectonophysics 233:233–252

    Article  Google Scholar 

  10. Holness MB (1997) Surface chemical controls on pore-fluid connectivity in texturally equilibrated materials. In: Jamtveit B, Yardley B (eds) Fluid flow and transport in rocks. Chapman and Hall, London, pp 149–169

    Google Scholar 

  11. Holtzman BK, Groebner NJ Zimmerman ME, Ginsberg SB, Kohlstedt DL (2003) Stress‐driven melt segregation in partially molten rocks. Geochem Geophys Geosyst 4:8607, doi:10.1029/2001GC000258

    Article  Google Scholar 

  12. Ichihara M (1997) Mechanics of viscoelastic liquid containing bubbles; implications to the dynamics of magma. Ph D thesis, Univ. of Tokyo (in Japanese)

    Google Scholar 

  13. Iwamori H (1994) 238U-230Th-226Ra- and 235U-231Pa disequilibria produced by mantle melting with porous and channel flows. Earth Planet Sci Lett 125:1–16

    Article  CAS  Google Scholar 

  14. Jackson I, Fitz Gerald JD, Faul UH, Tan BH (2002) Grain-size‐sensitive seismic wave attenuation in polycrystalline olivine. J Geophys Res 107(B12):2360, doi:10.1029/2001JB001225

    Article  Google Scholar 

  15. Kuster GT, Toksöz MN (1974) Velocity and attenuation of seismic waves in two-phase media, 1, Theoretical formulations. Geophysics 39:587–606

    Google Scholar 

  16. Masterlark T, Wang HF (2002) Transient stress‐coupling between the 1992 landers and 1999 Hoctor Mine, California, earthquakes. Bull Seism Soc Am 92:1470–1486

    Article  Google Scholar 

  17. Mavko GM (1980) Velocity and attenuation in partially molten rocks. J Geophys Res 85:5173–5189

    Article  Google Scholar 

  18. Mavko G, Mukerji T, Dvorkin J (1998) The Rock Physics Handbook. Cambridge University Press, New York

    Google Scholar 

  19. Mavko GM, Nur A (1975) Melt squirt in the asthenosphere. J Geophys Res 80:1444–1448

    Article  Google Scholar 

  20. McKenzie D (1984) The generation and compaction of partially molten rock. J Petrol 25:713–765

    CAS  Google Scholar 

  21. Mura T (1987) Micromechanics of defects in solids, 2nd edn. Martinus Nijhoff Publishers, Dordrecht

    Google Scholar 

  22. Nakajima J, Hasegawa A (2003) Tomographic imaging of seismic velocity structure in and around the Onikobe volcanic area, northeastern Japan: implications for fluid distribution. J Vol Geotherm Res 127:1–18

    Article  CAS  Google Scholar 

  23. Nakajima J, Matsuzawa T, Hasegawa A, Zhao D (2001) Three‐dimensional structure of Vp, Vs, and Vp/Vs beneath the northeastern Japan arc: Implications for arc magmatism and fluids. J Geophys Res 106:21843–21857

    Article  Google Scholar 

  24. Nakajima J, Takei Y, Hasegawa A (2005) Quantitative analysis of the inclined low‐velocity zone in the mantle wedge of northeastern Japan: A systematic change of melt‐filled pore shape with depth and its implications for melt migration. Earth Planet Sci Lett 234:59–70

    Article  CAS  Google Scholar 

  25. Nowick AS, Berry BS (1972) Anelastic relaxation in crystalline solids. Academic Press, New York

    Google Scholar 

  26. Obara K (2002) Nonvolcanic deep tremor associated with subduction in Southwest Japan. Science 296:1679–1681

    Article  CAS  Google Scholar 

  27. O'Connell RJ, Budiansky B (1974) Seismic velocities in dry and saturated cracked solids. J Geophys Res 79:5412–5426

    Article  Google Scholar 

  28. O'Connell RJ, Budiansky B (1977) Viscoelastic properties of fluid‐saturated cracked solids. J Geophys Res 82:5719–5735

    Article  Google Scholar 

  29. Ohmi S, Obara K (2002) Deep low‐frequency earthquakes beneath the focal region of the Mw 6.7 2000 Western Tottori Earthquake. Geophys Res Lett 29:1807, doi:10.1029/2001GL014469

    Article  Google Scholar 

  30. Ribe N (1985) The deformation and compaction of partially molten zone. Geophys J R astr Soc 83:487–501

    Google Scholar 

  31. Rice JR, Cleary MP (1976) Some basic stress diffusion solutions for fluid‐saturated elastic porous media with compressible constituents. Rev Geophys 14:227–241

    Article  Google Scholar 

  32. Riley GN, Kohlstedt DL (1991) Kinetics of melt migration in upper mantle‐type rocks. Earth Planet Sci Lett 105:500–521

    Article  CAS  Google Scholar 

  33. Schäfer K (ed) (1980) Landolt–Börnstein Numerical Data and Functional Relationships in Science and Technology, New Series IV, vol 4, High‐Pressure Properties of Matter. Springer, Berlin

    Google Scholar 

  34. Scott DR, Stevenson DJ (1984) Magma solitons. Geophys Res Lett 11:1161–1164

    Article  Google Scholar 

  35. Spiegelman M, Kelemen PB (2003) Extreme chemical variability as a consequence of channelized melt transport. Geochem Geophys Geosyst 4:1055, doi:10.1029/2002GC000336

    Article  Google Scholar 

  36. Spiegelman M, Kelemen PB, Aharonov E (2001) Causes and consequences of flow organization during melt transport: The reaction infiltration instability in compactible media. J Geophys Res 106:2061–2077

    Article  Google Scholar 

  37. Spiegelman M, McKenzie D (1987) Simple 2-D models for melt extraction at mid-ocean ridges and island arcs. Earth Planet Sci Lett 83:137–152

    Article  Google Scholar 

  38. Stevenson DJ (1986) On the role of surface tension in the migration of melts and fluids. Geophys Res Lett 13:1149–1152

    Article  Google Scholar 

  39. Stevenson DJ (1989) Spontaneous small-scale melt segregation in partial melts undergoing deformation. Geophys Res Lett 16:1067–1070

    Article  Google Scholar 

  40. Stolper E, Walker D, Hager BH, Hays JH (1981) Melt segregation from partially molten source regions: The importance of melt density and source region size. J Geophys Res 86:6261–6271

    Article  CAS  Google Scholar 

  41. Takei Y (1998) Constitutive mechanical relations of solid‐liquid composites in terms of grain‐boundary contiguity. J Geophys Res 103:18183–18203

    Article  Google Scholar 

  42. Takei Y (2002) Effect of pore geometry on Vp/Vs: From equilibrium geometry to crack. J Geophys Res 107(B2):2043, doi:10.1029/2001JB000522

    Article  Google Scholar 

  43. Takei Y (2005) A review of the mechanical properties of solid‐liquid composites. in Japanese, J Geography 114(6):901–920

    CAS  Google Scholar 

  44. Tsumura N, Matsumoto S, Horiuchi S, Hasegawa A (2000) Three‐dimensional attenuation structure beneath the northeastern Japan arc estimated from spectra of small earthquakes. Tectonophysics 319:241–260

    Article  Google Scholar 

  45. von Bargen N, Waff HS (1986) Permeabilities, interfacial areas and curvatures of partially molten systems: Results of numerical computations of equilibrium microstructures. J Geophys Res 91:9261–9276

    Article  Google Scholar 

  46. Waff HS (1980) Effects of the gravitational field on liquid distribution in partial melts within the upper mantle. J Geophys Res 85:1815–1825

    Article  Google Scholar 

  47. Walsh JB (1969) New analysis of attenuation in partially melted rock. J Geophys Res 74:4333–4337

    Article  Google Scholar 

  48. Wang HF (2000) Theory of linear poroelasticity with applications to geomechanics and hydrogeology. Princeton University Press, Princeton, New Jersey

    Google Scholar 

  49. Watanabe T (1993) Effects of water and melt on seismic velocities and their application to characterization of seismic reflectors. Geophys Res Lett 20:2933–2936

    Article  Google Scholar 

  50. Watt JP, Davies GF, O'Connell RJ (1976) The elastic properties of composite materials. Rev Geophys 14:541–563

    Article  CAS  Google Scholar 

  51. Wong T-F, Ko S, Olgaard DL (1997) Generation and maintenance of pore pressure excess in a dehydration system 2, Theoretical analysis. J Geophys Res 102:481–852

    Google Scholar 

Download references

Acknowledgments

The original and more simplified form of this article was published in Japanese [43]. I especially thank Tokyo Geographical Society, for the permission to use a modified version of figures and limited text. I thank S. Nagumo for helpful discussions. I also thank B. K. Holtzman and B. Chouet for reading the manuscript and providing helpful comments.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag

About this entry

Cite this entry

Takei, Y. (2011). Earth’s Crust and Upper Mantle, Dynamics of Solid–Liquid Systems in. In: Meyers, R. (eds) Extreme Environmental Events. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7695-6_27

Download citation

Publish with us

Policies and ethics