Extreme Environmental Events

2011 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Earthquake Occurrence and Mechanisms, Stochastic Models for

  • David Vere-Jones
Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-7695-6_21

Article Outline

Glossary

Definition of the Subject

Introduction

Historical Overview

Stochastic Models for Earthquake Mechanisms

Models for Paleoseismological and Historical Earthquakes

Point Process Models for Regional Catalogues

Stochastic Models with Precursors

Further Topics

Future Directions

Acknowledgments

Bibliography

Keywords

Entropy Depression Covariance Brittle Explosive 
This is a preview of subscription content, log in to check access

Notes

Acknowledgments

I am very grateful to friends and colleagues, especially David Harte, Mark Bebbington, David Rhoades and Yehuda Ben-Zion, for helpful discussions, correcting errors and plugging gaps.

Bibliography

  1. 1.
    Ambraseys NN, Melville CP (1982) A History of Persian Earthquakes. Cambridge University Press, CambridgeGoogle Scholar
  2. 2.
    Andersen PK, Borgan Ø, Gill RD, Keiding N (1993) Statistical Models Based on Counting Processes. Springer, New YorkGoogle Scholar
  3. 3.
    Bak P, Tang C (1989) Earthquakes as a self‐organized critical phenomenon. J Geophys Res 94:15635–15637Google Scholar
  4. 4.
    Bebbington M, Harte DS (2003) The linked stress release model for spatio‐temporal seismicity: formulations, procedures and applications. Geophys J Int 154:925–946Google Scholar
  5. 5.
    Bebbington M, Vere-Jones D, Zheng X (1990) Percolation theory: a model for earthquake faulting? Geophys J Int 100:215–220Google Scholar
  6. 6.
    Ben-Zion Y (1996) Stress, Slip and earthquakes in models of complex single‐fault systems incorporating brittle and creep deformations. J Geophys Res 101:5677–5706Google Scholar
  7. 7.
    Ben-Zion Y, Dahmen K, Lyakhowsky V, Ertas D, Agnon A (1999) Self‐driven mode‐switching of earthquake activity on a fault system. Earth Planet. Sci Lett 172:11–21Google Scholar
  8. 8.
    Ben-Zion Y, Eneva M, Liu Y (2003) Large earthquake cycles and intermittent criticality on heterogeneous faults due to evolving stress and seismicity. J Geophys Res 108:2307V. doi:10.1029/2002JB002121
  9. 9.
    Ben-Zion Y, Lyakhovsky V (2002) Accelerated seismic release and related aspects of seismicity patterns on earthquake faults. Pure Appl Geophys 159:2385–2412Google Scholar
  10. 10.
    Ben-Zion Y, Rice J (1995) Slip patterns and earthquake populations along different classes of faults on elastic solids. J Geophys Res 100:12959–12983Google Scholar
  11. 11.
    Borovkov K, Vere-Jones D (2000) Explicit formulae for stationary distributions of stress release processes. J Appl Prob 37:315–321Google Scholar
  12. 12.
    Brémaud P, Massoulié L (2001) Hawkes branching processes without ancestors. J App Prob 38:122–135Google Scholar
  13. 13.
    Brillinger DR (1981) Time Series: Data Analysis and Theory, 2nd edn. Holden Day, San FranciscoGoogle Scholar
  14. 14.
    Burridge R, Knopoff L (1967) Model and theoretical seismicity. Bull Seismol Soc Am 57:341–371Google Scholar
  15. 15.
    Chelidze TL, Kolesnikov YM (1983) Modelling and forecasting the failure process in the framework of percolation theory. Izvestiya Earth Phys 19:347–354Google Scholar
  16. 16.
    Chong FS (1983) Time-space‐magnitude interdependence of upper crustal earthquakes in the main seismic region of New Zealand. J Geol Geophys 26:7–24, New ZealandGoogle Scholar
  17. 17.
    Console R, Lombardi AM, Murru M, Rhoades DA (2003) Båth's Law and the self‐similarity of earthquakes. J Geophys Res 108(B2):2128V. doi:10.1029/2001JB001651
  18. 18.
    Cox DR (1972) Regression models and life tables (with discussion). Roy J Stat Soc Ser B 34:187–220Google Scholar
  19. 19.
    Dahmen K, Ertas D, Ben-Zion Y (1998) Gutenberg‐Richter and characteristic earthquake behavior in simple mean-field models of heterogeneous faults. Phys Rev E 58:1494–1501Google Scholar
  20. 20.
    Daley DJ, Vere-Jones D (2003) An Introduction to the Theory of Point Processes, 2nd edn, vol I. Springer, New YorkGoogle Scholar
  21. 21.
    Davison C (1938) Studies on the Periodicity of Earthquakes. Murthy, LondonGoogle Scholar
  22. 22.
    Diggle PJ (2003) Statistical Analysis of Spatial Point Patterns. 2nd edn. University Press, OxfordGoogle Scholar
  23. 23.
    Ebel JB, Chambers DW, Kafka AL, Baglivo JA (2007) Non‐Poissonian earthquake clustering and the hidden Markov model as bases for earthquake forecasting in California. Seismol Res Lett 78:57–65Google Scholar
  24. 24.
    Evison F, Rhoades D (2001) Model of long-term seismogenesis. Annali Geofisica 44:81–93Google Scholar
  25. 25.
    Felzer KR, Abercrombie RE, Ekström G (2004) A common origin for aftershocks, foreshocks and multiplets. Bull Amer Seismol Soc 94:88–98Google Scholar
  26. 26.
    Fisher RL, Dahmen K, Ramanathan S, Ben-Zion Y (1997) Statistics of earthquakes in simple models of heterogeneous faults. Phys Rev Lett 97:4885–4888Google Scholar
  27. 27.
    Griffiths AA (1924) Theory of rupture. In: Proceedings 1st Int Congress in Applied Mech, Delft, pp 55–63Google Scholar
  28. 28.
    Gutenberg B, Richter C (1949) Seismicity of the Earth and Associated Phenomena, 2nd edn. University Press, PrincetonGoogle Scholar
  29. 29.
    Habermann RE (1987) Man-made changes of seismicity rates. Bull Seismol Soc Am 77(1):141–159Google Scholar
  30. 30.
    Hainzl S, Ogata Y (2005) Detecting fluid signals in seismicity data through statistical earthquake modelling. J Geophys Res 110. doi:10.1029/2004JB003247
  31. 31.
    Harte D (2001) Multifractals: Theory and Applications. Chapman and Hall/CRC, Boca RatonGoogle Scholar
  32. 32.
    Harte D, Li DF, Vreede M, Vere-Jones D (2003) Quantifying the M8 prediction algorithm: reduction to a single critical variable and stability results. NZ J Geol Geophys 46:141–152Google Scholar
  33. 33.
    Harte D, Li D-F, Vere-Jones D, Vreede M, Wang Q (2007) Quantifying the M8 prediction algorithm II: model, forecast and evaluation. NZ J Geol Geophys 50:117–130Google Scholar
  34. 34.
    Harte D, Vere-Jones D (2005) The entropy score and its uses in earthquake forecasting. Pure Appl Geophys 162:1229–1253Google Scholar
  35. 35.
    Hawkes AG (1971) Spectra of some self‐exciting and mutually exciting point processes. Biometrika 58:83–90Google Scholar
  36. 36.
    Hawkes AG, Oakes D (1974) A cluster representation of a self‐exciting process. J Appl Prob 11:493–503Google Scholar
  37. 37.
    Helmstetter A, Sornette D (2002) Subcritical and supercritical regimes in epidemic models of earthquake aftershocks. J Geophys Res 107:2237. doi:10.1029/2001JB001580 Google Scholar
  38. 38.
    Helmstetter A, Sornette D (2003) Båth's law derived from the Gutenberg‐Richter law and from aftershock properties. Geophys Res Lett 103(20):2069. doi:10.1029/2003GL018186 Google Scholar
  39. 39.
    Ishimoto M, Iida K (1939) Bull Earthq Res Inst Univ Tokyo 17:443–478Google Scholar
  40. 40.
    Iwata T, Young RP (2005) Tidal stress/strain and the b‑values of acoustic emissions at the Underground Research Laboratory. Canada. Pure Appl Geophys 162:(6–7):1291–1308. doi:10.1007/s00024-005-2670-2 (P*1357)Google Scholar
  41. 41.
    Jackson DD, Kagan YY (1999) Testable earthquake forecasts for 1999. Seismol Res Lett 70:393–403Google Scholar
  42. 42.
    Jaeger JC, Cook NGW (1969) Fundamentals of Rock Mechanics. Methuen, LondonGoogle Scholar
  43. 43.
    Jaume SC, Bebbington MS (2004) Accelerating seismic moment release from a self‐correcting stochastic model. J Geophys Res 109:B12301. doi:10.1029/2003JB002867 Google Scholar
  44. 44.
    Jeffreys H (1938) Aftershocks and periodicity in earthquakes. Beitr Geophys 53:111–139Google Scholar
  45. 45.
    Jeffreys H (1939) Theory of Probability, 1st edn (1939), 3rd edn (1961). University Press, CambridgeGoogle Scholar
  46. 46.
    Jones LM, Molnar P (1979) Some characteristics of foreshocks and their possible relationship to earthquake prediction and premonitory slip on a fault. J Geophys Res 84:3596–3608Google Scholar
  47. 47.
    Kagan Y (1973) Statistical methods in the study of the seismic process. Bull Int Stat Inst 45(3):437–453Google Scholar
  48. 48.
    Kagan Y (1991) Seismic moment distribution. Geophys J Int 106:121–134Google Scholar
  49. 49.
    Kagan Y (1991) Fractal dimension of brittle fracture. J Non‐linear Sci 1:1–16Google Scholar
  50. 50.
    Kagan Y (1994) Statistics of characteristic earthquakes. Bull Seismol Soc Am 83:7–24Google Scholar
  51. 51.
    Kagan Y, Jackson DD (1994) Probabilistic forecasting of earthquakes. Geophys J Int 143:438–453Google Scholar
  52. 52.
    Kagan Y, Knopoff L (1977) Earthquake risk prediction as a stochastic process. Phys Earth Planet Inter 14:97–108Google Scholar
  53. 53.
    Kagan Y, Knopoff L (1980) Spatial distribution of earthquakes: the two-point correlation function. Geophys J Roy Astronom Soc 62:303–320Google Scholar
  54. 54.
    Kagan Y, Knopoff L (1981) Stochastic synthesis of earthquake catalogues. J Geophys Res 86:2853–2862Google Scholar
  55. 55.
    Kagan Y, Knopoff L (1987) Statistical short-term earthquake prediction. Sci 236:1563–1567Google Scholar
  56. 56.
    Keilis-Borok VI, Kossobokov VG (1990) Premonitory activation of the earthquake flow: algorithm M8. Phys Earth Planet Inter 61:73–83Google Scholar
  57. 57.
    Kiremidjian AS, Anagnos T (1984) Stochastic slip predictable models for earthquake occurrences. Bull Seismol Soc Am 74:739–755Google Scholar
  58. 58.
    Knopoff L (1971) A stochastic model for the occurrence of main sequence earthquakes. Rev Geophys Space Phys 9:175–188Google Scholar
  59. 59.
    Kossobokov VG (1997) User manual for M8. In: Algorithms for Earthquake Statistics and Prediction. IASPEI Softw Ser 6:167–221Google Scholar
  60. 60.
    Kossobokov VG (2005) Earthquake prediction: principles, implementation, perspectives. Part I of Computational Seismology 36, “Earthquake Prediction and Geodynamic Processes.” (In Russian)Google Scholar
  61. 61.
    Kossobokov VG (2006) Testing earthquake prediction methods: The West Pacific short-term forecast of earthquakes with magnitude MwHRV ≥ 5.8. Tectonophysics 413:25–31Google Scholar
  62. 62.
    Libicki E, Ben-Zion Y (2005) Stochastic branching models of fault surfaces and estimated fractal dimensions. Pure Appl Geophys 162:1077–1111Google Scholar
  63. 63.
    Lombardi A (2002) Probabilistic interpretation of Båth's law. Ann Geophys 45:455–472Google Scholar
  64. 64.
    Lomnitz CA (1974) Plate Tectonics and Earthquake Risk. Elsevier, AmsterdamGoogle Scholar
  65. 65.
    Lomnitz‐Adler J (1985) Asperity models and characteristic earthquakes Geophys. J Roy Astron Soc 83:435–450Google Scholar
  66. 66.
    Lomnitz‐Adler J (1985) Automaton models of seismic fracture: constraints imposed by the frequency‐magnitude relation. J Geophys Res 95:491–501Google Scholar
  67. 67.
    Lomnitz‐Adler J (1988) The theoretical seismicity of asperity models; an application to the coast of Oaxaca. Geophys J 95:491–501Google Scholar
  68. 68.
    Liu J, Chen Y, Shi Y, Vere-Jones D (1999) Coupled stress release model for time dependent earthquakes. Pure Appl Geophys 155:649–667Google Scholar
  69. 69.
    Loève M (1977) Probability Theory I, 4th edn. Springer, New YorkGoogle Scholar
  70. 70.
    Lu C, Vere-Jones D (2001) Statistical analysis of synthetic earthquake catalogs generated by models with various levels of fault zone disorder. J Geophys Res 106:11115–11125Google Scholar
  71. 71.
    Lu C, Harte D, Bebbington M (1999) A linked stress release model for Japanese historical earthquakes: coupling among major seismic regions. Earth Planet. Science 51:907–916Google Scholar
  72. 72.
    Macdonald II, Zucchini W (1997) Hidden Markov and Other Models for Discrete‐Valued Time Series. Chapman and Hall, LondonGoogle Scholar
  73. 73.
    Main IG, Burton PW (1984) Information theory and the earthquake frequency‐magnitude distribution. Bull Seismol Soc Am 74:1409–1426Google Scholar
  74. 74.
    Mandelbrot BB (1977) Fractals: Form, Chance and Dimension. Freeman, San FranciscoGoogle Scholar
  75. 75.
    Mandelbrot BB (1989) Multifractal measures, especially for the geophysicist. Pure Appl Geophys 131:5–42Google Scholar
  76. 76.
    Martínez VJ, Saar E (2002) Statistics of the Galaxy Distribution. Chapman & Hall/CRC, Boca RatonGoogle Scholar
  77. 77.
    Matsu'ura RS (1986) Precursory quiescence and recovery of aftershock activities before some large aftershocks. Bull Earthq Res Inst Tokyo 61:1–65Google Scholar
  78. 78.
    Matsu'ura RS, Karakama I (2005) A point process analysis of the Matsushiro earthquake swarm sequence: the effect of water on earthquake occurrence. Pure Appl Geophys 162 1319–1345. doi:10.1007/s00024-005-2762-0 Google Scholar
  79. 79.
    Matthews MV, Ellsworth WL, Reasenberg PA (2002) A Brownian model for recurrent earthquakes. Bull Seism Soc Amer 92:2232–2250Google Scholar
  80. 80.
    Merrifield A, Savage MK, Vere-Jones D (2004) Geographical distributions of prospective foreshock probabilities in New Zealand. J Geol Geophys 47:327–339, New ZealandGoogle Scholar
  81. 81.
    Michael A (1997) Test prediction methods: earthquake clustering versus the Poisson model. Geophys Res Lett 24:1891–1894Google Scholar
  82. 82.
    Mogi K (1962) Study of elastic shocks caused by the fracture of heterogeneous materials and its relation to earthquake phenomena. Bull Earthq Res Inst Tokyo Univ 40:125–173Google Scholar
  83. 83.
    Mogi K (1985) Earthquake Prediction. Academic Press, TokyoGoogle Scholar
  84. 84.
    Molchan GM (1990) Strategies in strong earthquake prediction. Phys Earth Plan Int 61:84–98Google Scholar
  85. 85.
    Molchan GM, Kagan YY (1992) Earthquake prediction and its optimization. J Geophys Res 106:4823–4838Google Scholar
  86. 86.
    Ogata Y (1988) Statistical models for earthquake occurrence and residual analysis for point processes. J Amer Stat Soc 83:9–27Google Scholar
  87. 87.
    Ogata Y (1998) Space-time point process models for earthquake occurrences. Annals Inst Stat Math 50:379–402Google Scholar
  88. 88.
    Ogata Y (1999) Estimating the hazard of rupture using uncertain occurrence times of paleoearthquakes. J Geophys Res 104:17995–18014Google Scholar
  89. 89.
    Ogata Y (2005) Detection of anomalous seismicity as a stress change sensor. J Geophys Res 110(B5):B05S06. doi:10.1029/2004JB003245 Google Scholar
  90. 90.
    Ogata Y, Utsu T, Katsura K (1996) Statistical discrimination of foreshocks from other earthquake clusters. Geophys J Int 127:17–30Google Scholar
  91. 91.
    Ogata Y, Jones L, Toda S (2003) When and where the aftershock activity was depressed: Contrasting decay patterns of the proximate large earthquakes in southern California. J Geophys Res 108(B6):2318. doi:10.1029/2002JB002009 Google Scholar
  92. 92.
    Omori F (1894) On aftershocks of earthquakes. J Coll Sci Imp Acad Tokyo 7:111–200Google Scholar
  93. 93.
    Otsuka M (1972) A chain reaction type source model as a tool to interpret the magnitude‐frequency relation of earthquakes. J Phys Earth 20:35–45Google Scholar
  94. 94.
    Pietavolo A, Rotondi R (2000) Analyzing the interevent time distribution to identify seismicity patterns: a Bayesian non‐parametric approach to the multiple change‐point problem. Appl Stat 49:543–562Google Scholar
  95. 95.
    Pisarenko DV, Pisarenko VF (1995) Statistical estimation of the correlation dimension. Phys Lett A 197:31–39Google Scholar
  96. 96.
    Reasenberg PA (1999) Foreshock occurrence before large earthquakes. J Geophys Res 104:4755–4768Google Scholar
  97. 97.
    Reasenberg PA, Jones LM (1989) Earthquake hazard after a mainshock in California. Sci 243:1173–1176Google Scholar
  98. 98.
    Reid HF (1911) The elastic‐rebound theory of earthquakes. Bull Dept Geol Univ Calif 6:413–444Google Scholar
  99. 99.
    Renyi A (1959) On the dimension and entropy of probability distributions. Acta Math 10:193–215Google Scholar
  100. 100.
    Rhoades DA (2007) Application of the EEPAS model to forecasting earthquakes of moderate magnitude in Southern California. Seismol Res Lett 78:110–115Google Scholar
  101. 101.
    Rhoades DA, Evison FF (2004) Long-range earthquake forecasting with every event a precursor according to scale. Pure Appl Geophys 161:147–171Google Scholar
  102. 102.
    Rhoades DA, Evison FF (2005) Test of the EEPAS forecasting model on the Japan earthquake catalogue. Pure Appl Geophys 162:1271–1290Google Scholar
  103. 103.
    Rhoades DA, Van Dissen RJ (2003) Estimation of the time‐varying hazard of rupture of the Alpine Fault of New Zealand, allowing for uncertainties. NZ J Geol Geophys 40:479–488Google Scholar
  104. 104.
    Ripley BD (1988) Statistical Inference for Spatial Processes. University Press, CambridgeGoogle Scholar
  105. 105.
    Robinson R (2000) A test of the precursory accelerating moment release model on some recent New Zealand earthquakes. Geophys J Int 140:568–576. doi:10.1046/j.1365-246X2000.00054.x Google Scholar
  106. 106.
    Robinson R, Benites R (1995) Synthetic seismicity models for the Wellington region of New Zealand: implications for the temporal distribution of large events. J Geophys Res 100:18229–18238. doi:10.1029/95JB01569 Google Scholar
  107. 107.
    Rundle JB, Klein W, Tiampo K, Gross S (2000) Dynamics of seismicity patterns in systems of earthquake faults. In: Geocomplexity and the Physics of Earthquakes. Geophysical Monograph 120, American Geophysical UnionGoogle Scholar
  108. 108.
    Saito M, Kikuchi M, Kudo M (1973) An analytical solution of: Go-game model of earthquakes. Zishin 26:19–25Google Scholar
  109. 109.
    Scholz CH (1968) The frequency‐magnitude relation of microfaulting in rock and its relation to earthquakes. Bull Seism Soc Am 58:399–415Google Scholar
  110. 110.
    Scholz CH (1990) The Mechanics of Earthquakes and Faulting. Cambridge University Press, New YorkGoogle Scholar
  111. 111.
    Schorlemmer D, Gerstenberger MC, Wiemer S, Jackson DD, Rhoades DA (2007) Earthquake likelihood model testing. Seismol Res Lett 78:17–29Google Scholar
  112. 112.
    Schuster A (1897) On lunar and solar periodicities of earthquakes. Proc Roy Soc London 61:455–465Google Scholar
  113. 113.
    Schwartz DP, Coppersmith K (1984) Fault behavior and characteristic earthquakes: examples from the Wasatch and San Andreas Faults. J Geophys Res 89:5681–5698Google Scholar
  114. 114.
    Shi YL, Liu J, Chen Y, Vere-Jones D (1999) Coupled stress release models for time‐dependent seismicity. J Pure Appl Geophys 155:649–667Google Scholar
  115. 115.
    Shi Y, Liu J, Zhang G (2001) An evaluation of Chinese annual earthquake predictions, 1990–1998. J Appl Prob 38A:222–231Google Scholar
  116. 116.
    Shimazaki K, Nakata T (1980) Time‐predictable recurrence model for large earthquakes. Geophys Res Lett 7:179–282Google Scholar
  117. 117.
    Smith WD (1986) Evidence for precursory changes in the frequency‐magnitude b‑value. Geophys J Roy Astron Soc 86:815–838Google Scholar
  118. 118.
    Smith WD (1998) Resolution and significance assessment of precursory changes in mean earthquake magnitude. Geophys J Int 135:515–522Google Scholar
  119. 119.
    Stoyan D, Stoyan H (1994) Fractals, Random Shapes and Point Fields. Wiley, ChichesterGoogle Scholar
  120. 120.
    Tiampo KF, Rundle JB, Klein W, Ben-Zion Y, McGinnis SA (2004) Using eigenpattern analysis to constrain seasonal signals in Southern California. Pure Appl Geophys 16:19–10, 1991 V2003. doi:10.1007/s00024-004-2545-y Google Scholar
  121. 121.
    Turcotte DL (1992) Fractals and Chaos in Geology and Geophysics. Cambridge University Press, CambridgeGoogle Scholar
  122. 122.
    Utsu T (1961) A statistical study on the properties of aftershocks. Geophys Mag 30:521–605Google Scholar
  123. 123.
    Utsu T, Ogata Y (1997) IASPEI Softw Libr 6:13–94Google Scholar
  124. 124.
    Utsu T, Ogata Y, Matu'ura RS (1995) The centenary of the Omori formula for a decay law of aftershock activity. J Phys Earth 43:1–33Google Scholar
  125. 125.
    Vere-Jones D (1969) A note on the statistical interpretation of Båth's law. Bull Seismol Soc Amer 59:1535–1541Google Scholar
  126. 126.
    Vere-Jones D (1970) Stochastic models for earthquake occurrence. J Roy Stat Soc B 32:1–62Google Scholar
  127. 127.
    Vere-Jones D (1977) Statistical theories for crack propagation. Pure Appl Geophys 114:711–726Google Scholar
  128. 128.
    Vere-Jones D (1978) Space‐time correlations of microearthquakes – a pilot study. Adv App Prob 10:73–87, supplementGoogle Scholar
  129. 129.
    Vere-Jones D (1978) Earthquake prediction: a statistician's view. J Phys Earth 26:129–146Google Scholar
  130. 130.
    Vere-Jones D (1995) Forecasting earthquakes and earthquake risk. Int J Forecast 11:503–538Google Scholar
  131. 131.
    Vere-Jones D (1999) On the fractal dimension of point patterns. Adv Appl Prob 31:643–663Google Scholar
  132. 132.
    Vere-Jones D (2003) A class of self‐similar random measures. Adv Appl Prob 37:908–914Google Scholar
  133. 133.
    Vere-Jones D, Davies RB (1966) A statistical analysis of earthquakes in the main seismic region of New Zealand. J Geol Geophys 9:251–284Google Scholar
  134. 134.
    Vere-Jones D, Ozaki T (1982) Some examples of statistical inference applied to earthquake data. Ann Inst Stat Math 34:189–207Google Scholar
  135. 135.
    Vere-Jones D, Robinson R, Yang W (2001) Remarks on the accelerated moment release model for earthquake forecasting: problems of simulation and estimation. Geophys J Int 144:515–531Google Scholar
  136. 136.
    von Bortkiewicz L (1898) Das Gesetz der kleinen Zahlen. Teubner, LeipzigGoogle Scholar
  137. 137.
    Weibull W (1939) A statistical theory of the strength of materials. Ingvetensk Akad Handl no 151Google Scholar
  138. 138.
    Working Group on Californian Earthquake Probabilities (1990) Probabilities of earthquakes in the San Francisco Bay region of California. US Geological Survey Circular 153Google Scholar
  139. 139.
    Yin X, Yin C (1994) The precursor of instability for non‐linear systems and its application to the case of earthquake prediction – the load‐unload response ratio theory. In: Newman WI, Gabrielov AM (eds) Nonlinear dynamics and Predictability of Natural Phenomena. AGU Geophysical Monograph 85:55–66Google Scholar
  140. 140.
    Zheng X, Vere-Jones D (1994) Further applications of the stress release model to historical earthquake data. Tectonophysics 229:101–121Google Scholar
  141. 141.
    Zhuang J (2000) Statistical modelling of seismicity patterns before and after the 1990 Oct 5 Cape Palliser earthquake, New Zealand. NZ J Geol Geophys 43:447–460Google Scholar
  142. 142.
    Zhuang J, Yin X (2000) The random distribution of the loading and unloading response ratio under the assumptions of the Poisson model. Earthq Res China 14:38–48Google Scholar
  143. 143.
    Zhuang J, Ogata Y, Vere-Jones D (2004) Analyzing earthquake clustering features by using stochastic reconstruction. J Geophys Res 109(B5):B05301. doi:10.1029/2003JB002879 Google Scholar
  144. 144.
    Zhuang J, Vere-Jones D, Guan H, Ogata Y, Ma L (2005) Preliminary analysis of precursory information in the observations on the ultra low frequency electric field in the Beijing region. Pure Appl Geophys 162:1367–1396. doi:10.10007/s00024-004-2674-3 Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • David Vere-Jones
    • 1
  1. 1.Statistical Research Associates and Victoria UniversityWellingtonNew Zealand