Skip to main content

Digital Image Processing: Post-processing and Data Integration

  • Reference work entry
Handbook of Satellite Applications

Abstract

The main objective of this chapter is to focus on the digital image processing, post-processing, and data integration techniques as applied to remotely sensed data for the purpose of extracting useful earth resources information. Image preprocessing and data reduction tools are described in the previous chapter. The concepts discussed in this chapter include:

  • Image processing techniques such as unsupervised image classifications, supervised image classifications, neural network classifiers, simulated annealing classifiers, and fuzzy logic classification systems

  • The most widely accepted indices and land use/land cover classification schemes

  • Post-processing techniques such as filtering and change detection

  • Accuracy assessment and validation of results

  • Data integration and spatial modeling including examples of integration of remotely sensed data with other conventional survey and map form data for Earth observation purposes

*Dr. Halil Cakir did not contribute to this article as an employer of the US Environmental Protection Agency nor does this article reflect the views of this agency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • S.G. Aaronoff, The minimum accuracy value as an index of classification accuracy. Photogrammetr. Eng. Remote Sens. 57(5), 501–509 (1985)

    Google Scholar 

  • J.R. Anderson, E. Hardy, J. Roach, R. Witmer, A land use and land cover classification system for use with remote sensing data, US Geological Survey Professional Paper 964, Washington, DC, 1976, p. 28ff.

    Google Scholar 

  • E.A. Blaisdell, Statistics in Practice (Harcourt Brace Javanovich, New York, 1993), p. 653ff

    Google Scholar 

  • T. Celik, Unsupervised change detection in satellite images using principal component analysis and k-means clustering. Geoscien. Remote Sens. Lett. IEEE 6(4), 772–776 (2009)

    Article  Google Scholar 

  • V. Cerny, Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm. J. Optim. Theory Appl. 45, 45–51 (1985)

    MathSciNet  Google Scholar 

  • S.B. Cho, J.H. Kim, Combining multiple neural networks by fuzzy integral for robust classification. IEEE Trans. Syst. Man Cybern. 25(2), 380–384 (1995)

    Article  Google Scholar 

  • J.A. Cohen, A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20, 37–46 (1960)

    Article  Google Scholar 

  • R.G. Congalton, K. Green, Assessing the Accuracy of Remotely Sensed Data: Principles and Practices (Lewis, Boca Raton, 1999), 137 p

    Google Scholar 

  • R.G. Congalton, R.G. Oderwald, R.A. Mead, Assessing landsat classification accuracy using discrete multivariate statistical techniques. Photogrammetr. Eng. Remote Sens. 49(12), 1671–1678 (1983)

    Google Scholar 

  • L.M. Cowardin, V. Carter, F.C. Golet, E.T. LaRoe, Classification of Wetlands and Deepwater Habitats of the United States (U.S. Fish and Wildlife Service, Washington, 1979), p. 103ff. FWS/OBS-79/31

    Google Scholar 

  • X. Dai, S. Khorram, A new automated land cover change detection system for remotely-sensed imagery based on artifical neural networks, in Proceedings of the IEEE/IGARSS 1997 International Geoscience and Remote Sensing Symposium, Singapore, 1997

    Google Scholar 

  • X. Dai, S. Khorram, Quantification of the impact of misregistration on digital change detection accuracy, in Proceedings of the IEEE/IGARSS 1997 International Geoscience and Remote Sensing Symposium, Singapore, 1997

    Google Scholar 

  • X. Dai, S. Khorram, Data fusion using artificial neural networks: a case study on multitemporal change analysis. Comput. Environ. Urban Syst. 23, 19–31 (1999)

    Article  Google Scholar 

  • A. Das, B.K. Chakrabarti, Quantum annealing and related optimization methods. Lect. Notes Phys. 679, 239–257 (2005)

    Article  Google Scholar 

  • J. De Vincente, J. Lanchares, J. Hermida, Placement by thermodynamic simulated annealing. Phys. Lett. A 317, 415–423 (2003)

    Article  Google Scholar 

  • J.R. Dobson, E.A. Bright, R.L. Ferguson, D.W. Field, L.L. Wood, K.D. Haddad, H. Iredale, J.R. Jensen, V. Klemas, R.J. Orth, J. P. Thomas, NOAA Coastal Change Analysis Program (C-CAP); Guidance for Regional Implementation, National Oceanic & Atmospheric Administration, Washington, NMFS 123, 1995, p. 92ff

    Google Scholar 

  • A.S. Elfishawy, S.B. Kesler, Adaptive algorithms for change detection in image sequence. Signal Process. 23, 179–191 (1991)

    Article  Google Scholar 

  • G.M. Foody, Status of land cover classification accuracy assessment. Remote Sens. Environ. 80, 185–201 (2002)

    Article  Google Scholar 

  • M.F. Goodchild, G.Q. Sun, S. Yang, Development and test of an error model for categorical data. Int. J. Geogr. Inf. Syst. 6(2), 87–104 (1992)

    Article  Google Scholar 

  • A. Hagen, Fuzzy set approach to assessing similarity of categorical maps. Int. J. Geogr. Inf. Sci. 17, 235–249 (2003)

    Article  Google Scholar 

  • D.B. Hester, Land cover mapping and change detection in urban watersheds using quick bird high spatial resolution satellite imagery, Ph.D. Dissertation, North Carolina State University, 2008, p. 148

    Google Scholar 

  • D.B. Hester, H.I. Cakir, S.A.C. Nelson, S. Khorram, Per-pixel classification of high spatial resolution satellite imagery for urban land cover mapping. Photogramm. Eng. Remote Sens. 74, 463–471 (2008)

    Google Scholar 

  • D.B. Hester, S.A.C. Nelson, H.I. Cakir, S. Khorram, H. Cheshire, High resolution land cover change detection based on fuzzy uncertainty analysis and change reasoning. Int. J Remote Sens. 31, 455–475 (2010)

    Article  Google Scholar 

  • R.M. Hord, Digital Image Processing of Remotely-Sensed Data (Academic, New York, 1982), p. 256

    Google Scholar 

  • A.K. Jain, Fundamentals of Digital Image Processing (Prentice Hall, Englewood Cliffs, 1989), pp. 418–421

    MATH  Google Scholar 

  • J.R. Jensen, Introductory Digital Image Processing, Third edn. (Pearson Prentice Hall, Upper Saddle River, 2005). 316p

    Google Scholar 

  • I. Kanellopoulos, G.G. Wilkinson, Strategies and best practice for neural network image classification. Int. J. Remote Sens. 18, 711–725 (1997)

    Article  Google Scholar 

  • S. Khorram, H.M. Cheshire, K. Sidrellis, Z. Nagy. Mapping and GIS Development of Land Use/Land Cover Categories for the Albemarle-Pamlico Drainage Basin, NC Department of Environmental, Health, and Natural Resources, Dept. No. 91–08, 1992, p. 55ff

    Google Scholar 

  • S. Khorram, H. Cheshire, X. Dai, J. Morisette, Land cover inventory and change detection of coastal North Carolina using landsat thematic mapper data. ASPRS/ACSM – Annu. Conv. Expos. 1, 245–250 (1996). Remote Sensing and Photogrammetry

    Google Scholar 

  • S. Khorram, G.S. Biging, N.R. Chrisman, D.R. Colby, R.G. Congalton, J.E. Dobson, R.L. Ferguson, M.F. Goodchild, J.R. Jensen, T.H. Mace, Accuracy Assessment of Remote Sensing-Derived Change Detection. American Society of Photogrammetry and Remote Sensing, Monograph (1999)

    Google Scholar 

  • S. Kirkpatrick, C.D. Gelatt Jr., M.P. Vecchi, Optimization by simulated annealing. Science 220, 671–688 (1983)

    MathSciNet  MATH  Google Scholar 

  • V.V. Klemas, J.E. Dobson, R.L. Ferguson, K.D. Haddad, A coastal land cover classification system for the NOAA coastWatch change analysis program. J. Coast. Res. 9(3), 862–872 (1993)

    Google Scholar 

  • T. Lillesand, R. Kiefer, J. Chipman, Remote Sensing and Image Interpretation, 6th edn. (Wiley, New York, 2008). 763p

    Google Scholar 

  • R.L. Lunetta, J.G. Lyons (eds.), Geospatial data accuracy assessment. Report No. EPA/600/R-03/064 (US Environmental Protection Agency, Las Vegas, 2003), 335 p

    Google Scholar 

  • J.T. Morisette, S. Khorram, Exact confidence interval with portions. Photogrammetr. Eng. Remote Sens. 5 (2007)

    Google Scholar 

  • NOAA, Coastal Change Analysis Program (C-CAP), (Charleston: NOAA Coastal Services Center, 2004), http://www.csc.noaa-gov/crs/lca/ccap_program.html.

  • Y. Nogami, Y. Jyo, M. Yoshioka, S. Omatu, Remote sensing data analysis by Kohonen feature map and competitive learning. IEEE SMC’97 1, 524–529 (1997)

    Google Scholar 

  • D.P. Paine, J.D. Kiser, Chapter 23: mapping accuracy assessment, in Aerial Photography and Image Interpretation, 2nd edn. (Wiley, New York, 2003), pp. 465–480

    Google Scholar 

  • M. Pal, P.M. Mather, An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sens. Environ. 86, 554–565 (2003)

    Article  Google Scholar 

  • F. Qiu, J.R. Jensen, Opening of black box of neural networks for remote sensing image classification. Int. J. Remote Sens. 9, 1749–1768 (2004)

    Article  Google Scholar 

  • D.E. Rumelhart, G.E. Hinton, R.J. Williams, Parallel Distributed Processing (MIT Press, Cambridge, MA, 1986)

    Google Scholar 

  • K. Rutchey, L. Velcheck, Development of an everglades vegetation map using a SPOT image and global positioning system. Photogramm. Eng. Remote Sens. 60(6), 767–775 (1994)

    Google Scholar 

  • M.J. Sabins, Convergence and consistency of fuzzy C-means/ISODATA algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 9, 661–668 (1987)

    Article  Google Scholar 

  • P.C. Shurr, Acceptance of the acceptance criteria for the simulated annealing algorithm. Math. Oper. Res. 22(2), 266ff (1997)

    Google Scholar 

  • S.V. Stehman, Statistical rigor and practical utility in thematic map accuracy assessment. Photogrammetr. Eng. Remote Sens. 67, 727–734 (2001)

    Google Scholar 

  • M. Story, R.G. Congalton, Accuracy assessment: a user’s perspective. Photogrammetr. Eng. Remote Sens. 52(3), 397–399 (1986)

    Google Scholar 

  • J.T. Tou, R.C. Gonzalez, Pattern Recognition Principles (Addison-Wesley, Readings, 1977). 377p

    Google Scholar 

  • J.L. Van Genderen, B.F. Lock, Testing land use map accuracy. Photogramm. Eng. Remote Sens. 43(9), 1135–1137 (1977)

    Google Scholar 

  • USGS, USGS National Land Cover Data, (EROS Data Center, Sioux Falls, 2004), http://landcover.usgs.gov/prodescription.html.

  • F. Wang, Integrating GIS and remote sensing image analysis systems by unifying knowledge representation scheme. IEEE Trans. Geosci. Remote Sens. 29, 656–664 (1991)

    Article  Google Scholar 

  • R. Xu, D. Wunsch, Survey of clustering algorithms. IEEE Trans. Neural Netw. 16, 32f (2005)

    Article  Google Scholar 

  • C. Yang, P. Chung, Knowledge-based automatic change detection positioning system for complex heterogeneous environments. J. Intell. Robotic Syst. 33, 85–98 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siamak Khorram Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Khorram, S., Nelson, S., Cakir, H., Van Der Wiele, C. (2013). Digital Image Processing: Post-processing and Data Integration. In: Pelton, J.N., Madry, S., Camacho-Lara, S. (eds) Handbook of Satellite Applications. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7671-0_92

Download citation

Publish with us

Policies and ethics