Space Weather and Hazards to Application Satellites

Abstract

Magnetic activity on the Sun causes disturbances moving out through interplanetary space as a stronger than usual solar wind. Enhanced solar activity can also produce large fluxes of penetrating energetic protons of great destructive potential. When either of these phenomena arrives near the Earth and strikes a satellite or spacecraft, damage is likely to be done, either directly and indirectly. Here we give an overview of the several different effects which occur in low Earth orbit (LEO), in medium Earth orbit (MEO), and in geostationary orbit (GEO) as well as in high inclination elliptical Earth orbits where positioning satellites are located.

Keywords

Atomic oxygen Coronal mass ejections (CMEs) Galactic cosmic rays Ionosphere Ionospheric scintillations “Killer” electrons Magnetic storm Plasma Radio communications Satellite drag Satellite operations Single event upsets Solar activity Solar cycle Solar protons Space debris Space environment Space weather Sunspots Van Allen radiation belts 

References

  1. V. Bothmer, I.A. Daglis, Space Weather: Physics and Effects (Springer Praxis, Berlin/New York, 2007), 438 pp.Google Scholar
  2. M.J. Carlowicz, R.E. Lopez, Storms from the Sun: The Emerging Science of Space Weather (Joseph Henry Press, Washington DC, 2002), 220 pp.Google Scholar
  3. I.A. Daglis (ed.), Space Storms and Space Weather Hazards (Kluwer, The Netherlands, 2001), 482 pp.Google Scholar
  4. I.A. Daglis (ed.), Effects of Space Weather on Technology Infrastructure. NATO Science Series (Springer, Dordrecht, 2004), 176 pp.Google Scholar
  5. J.W. Freeman, Storms in Space (Cambridge University Press, Cambridge, 2001), 139 pp.Google Scholar
  6. D.H. Hathaway, R.M. Wilson, What the sunspot record tells us about space climate. Solar Phys. 224, 5–19 (2004)CrossRefGoogle Scholar
  7. J. Lilenstein (ed.), Space Weather; Research towards Applications in Europe. Astrophysics and space science library, vol. 344 (Springer, Dordrecht, 2007), 330 pp.Google Scholar
  8. M. Moldwin, An Introduction to Space Weather (Cambridge University Press, Cambridge, 2008), 134 pp.CrossRefGoogle Scholar
  9. M.J. Rycroft, The plasma and radiation environment in Earth orbit, in Encyclopedia of Aerospace Engineering (Wiley, Chichester, 2010). Chapter eae323Google Scholar
  10. C.J. Schrijver, G.L. Siscoe (eds.), Heliophysics: Plasma Physics of the Local Cosmos (Cambridge University Press, Cambridge/New York, 2009), 435 pp.Google Scholar
  11. A.K. Singh, D. Siingh, R.P. Singh, Space weather: physics, effects and predictability. Surv. Geophys. 31, 581–638 (2010)CrossRefGoogle Scholar
  12. P. Song, H.J. Singer, G.L. Siscoe (eds.), Space Weather (American Geophysical Union, Washington DC, 2001), 440 pp. Geophysical Monograph 125Google Scholar
  13. A.C. Tribble, The Space Environment: Implications for Spacecraft Design, 2nd edn. (Princeton University Press, Princeton, 2003), 248 pp.Google Scholar
  14. A.C. Tribble, The effect of the space environment on spacecraft technologies, in Encyclopedia of Aerospace Engineering (Wiley, Chichester, 2010). Chapter eae568Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Cambridge Atmospheric, Environmental and Space Activities and Research (CAESAR) ConsultancyCambridgeUK

Personalised recommendations