Advertisement

Remote Sensing Data Applications

  • Haruhisa Shimoda
Reference work entry

Abstract

Application areas of remote sensing are very wide. They can be divided into two areas. One is applications in the Earth environmental monitoring and process studies of the Earth system and another is operational applications. The former can be divided into atmosphere, ocean, land, cryosphere, and their interactions. In this chapter, temperature, water vapor, aerosols and clouds, atmospheric constituents, greenhouse gases, sea surface temperature, sea surface salinity, sea surface wind, ocean color, sea surface height, topography, land cover, soil moisture, carbon cycle, sea ice, snow, and glaciers are described. The latter has wide variety. This chapter cannot cover all the operational application areas. Among them, Numerical Weather Prediction (NWP) and weather forecasting, fisheries, disasters such as biomass burnings, floods, ship navigations and agriculture are described. In addition to these application areas, some basic processings for applications are also described. These processings include radiative transfer and inversion problem, geometric and radiometric corrections, and classification algorithms.

Keywords

Aerosol Atmospheric constituents Carbon cycle Cloud Geometric correction Greenhouse gases Land cover Ocean color Radiative transfer Radiometric correction Sea ice Sea surface height Sea surface salinity Sea surface temperature Sea surface wind Snow Soil moisture Temperature Topography Water vapor Weather forecasting 

References

  1. J.R. Anderson, E.E. Hardy, J.T. Roach, R.E. Witmer, A land use and land cover classification system for use with remote sensor data, Geological survey professional paper 964 (1976)Google Scholar
  2. D. Antoine, A. Morel, Ralative importance of multiple scattering by air molecules and aerosols in forming the atmospheric path radiance in the visible and near-infrared parts of the spectrum. Appl. Opt. 37, 2245–2259 (1998)Google Scholar
  3. I. Asanuma, Depth and time resolved primary productivity model examined for optical properties of water, in Global Climate Change and Response of Carbon Cycle in the Equatorial Pacific and Indian Oeeans and Adjacent Landmasses, Elsevier Oceanogrhy Series, 73, 89–106 (2006)Google Scholar
  4. ASTER Level 4A01 data products specification (GDS version) version 1.1, ERSDAC (2002)Google Scholar
  5. M.J. Behrenfeld, E. Boss, D.A. Siegel, D.M. Shea, Carbon-based ocean productivity and phytoplankton physiology from space. Global Biogeochem. Cy. 19, GB1006 (2005)Google Scholar
  6. M.J. Berenfeld, P.G. Falkowski, Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogra 42, 1–20 (1997)Google Scholar
  7. A. Berk, S.L. Bernstein, G.P. Anderson et al., MODTRAN cloud and multiple scattering upgrades with application to AVIRIS. Remote Sens. Environ. (Elsevier) 65(3), 367–375 (1998)Google Scholar
  8. T. Blaschke, G.J. Hay, Object-oriented image analysis and scale-space: theory and methods for modeling and evaluating multi-scale landscape structures. Int. Arch. Photogramm. Remote Sens. 34(4/W5), 22–29 (2001)Google Scholar
  9. S.A. Buehler, P. Eriksson, T. Kuhn, A. von Engeln, C. Verdes, ARTS, the Atmospheric Radiative Transfer Simulator. J. Quant. Spectrosc. Radiat. Transf. 91(1), 65–93 (2005)Google Scholar
  10. M.-E. Carr, M.A. Friedrichs et al., A comparison of global estimates of marine primary production from ocean color. Deep Sea Res. 53, 741–770 (2006)Google Scholar
  11. S.P. Chavez Jr., An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sens. Environ. 24, 459–479 (1988)Google Scholar
  12. R.M. Chomkoa, H.R. Gordon, S. Maritorenab, D.A. Siegel, Simultaneous retrieval of oceanic and atmospheric parameters for ocean color imagery by spectral optimization: a validation. Remote Sens.Environ. 84, 208–220 (2003)Google Scholar
  13. S.A. Clough, M.W. Shephard, E.J. Mlawer, J.S. Delamere, M.J. Iacono, K. Cady-Pereira, S. Boukabara, P.D. Brown, Atmospheric radiative transfer modeling: a summary of the AER codes. J. Quant. Spectrosc. Radiat. Transfer. 91, 233–244 (2005)Google Scholar
  14. D.P. Craig, T. Thirunamachandran, Third-body mediation of resonance coupling between identical molecules. Chem. Phys. 135(1), 37–48 (1989)Google Scholar
  15. P.Y. Deschamps, M. Herman, D. Tanre, Modeling of the atmospheric effects and its application to the remote sensing of ocean color. Appl. Opt. 22, 3751–3758 (1983)Google Scholar
  16. G. Esser, J. Hoffstadt, F. Mack, U. Wittenberg, High-Resolution Biosphere Model (HRBM)-Documentation Model Version 3.00.00, vol. 2, ed. by G. Esser (Mitteilungen aus dem Institut fur Pflanzenokolgie der Justus-Liebig-Universitat Giessen, Giessen, 1994), p. 70Google Scholar
  17. D.R. Fatland, C.S. Lingle, Analysis of the 1993–95 Bering Glacier (Alaska) surge using differential SAR interferometry. J. Glaciol. 44, 532–546 (1998)Google Scholar
  18. J.A. Foley, I.C. Prentice, N. Ramankutty, S. Levis, D. Pollard, S. Sitch, A. Haxeltine, An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochem. Cy. 10, 603–628 (1996)Google Scholar
  19. K. Fukue, M. Maeda, H. Shimoda, Continental scalse land cover classification using modis surface reflectance products. Int. Arch. Photogram. Remote Sens. Spatial Inform. Sci. XXXVIII(Part 8), 953–957 (2010)Google Scholar
  20. B.C. Gao, M.J. Montes, R.-R. Li, H.M. Dierssen, C.O. Davis, An atmospheric correction algorithm for remote sensing of bright coastal waters using MODIS Land and Ocean Channels in the solar spectral region. TGARS 45, 1835–1843 (2007)Google Scholar
  21. R.M. Goldstein, H.A. Zebker, C.L. Werner, Satellite radar interferometry: two-dimensional phase unwrapping. Radio Sci 23(4), 713–720 (1988)Google Scholar
  22. H.R. Gordon, D.K. Clark, Clear water radiances for atmospheric correction of coastal zone color scanner imagery. Appl. Opt. 20, 4175–4180 (1981)Google Scholar
  23. H.R. Gordon, K.J. Voss, MODIS normalized water-leaving radiance. Algorithm theoretical basis document (MOD18), NASA (2004)Google Scholar
  24. H.R. Gordon, M. Wang, Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm. Appl. Opt. 33, 443–452 (1994)Google Scholar
  25. A.W. Gruen, Adaptive least squares correlation: a powerful image matching technique. S Afr J Photogramm. Remote Sens. Cartogr. 14, 175–187 (1985)Google Scholar
  26. History of remote sensing for crop acreage, NASS (2009), http://www.nass.usda.gov/Surveys/Remotely_Sensed_Data_Crop_Acreage/index.asp
  27. P. Hofmann, Detecting urban features from IKONOS data using an object-oriented approach, in RSPS2001 Proceedings, pp. 79–91Google Scholar
  28. J. Ishizaka, E. Siswanto, T. Itoh, H. Murakami, Y. Yamaguchi, N. Horimoto, T. Ishimaru, S. Hashimoto, T. Saino, Verification of vertically generalized production model and estimation of primary production in the Sagami Bay, Japan. J. Oceanogr. 63(3), 517–524 (2007)Google Scholar
  29. J.D. Jackson, Classical electrodynamics, 3rd edn. (Wiley, New York, 1962). American association of physics teachersGoogle Scholar
  30. M.Z. Jacobson, The short-term cooling but long-term global warming due to biomass burning. J. Clim. 17, 2909–2925 (2004)Google Scholar
  31. N. Jacquinet-Husson, V. Capelle, L. Crépeau, R. Armante, N.A. Scott, A. Chédin, The GEISA/IASI spectroscopic database in its 2008 edition. ISSWG2-2 IASI Sounding Science Working Group, Darmstadt, Allemagne, 21–22 Apr 2009Google Scholar
  32. Z. Jelenak, T. Mavor, L. Connor, N.-Y. Wang, P.S. Chang, P. Gaiser, Validation of ocean wind vector retrievals from WindSat polarimetric measurements. Presented at the 4th international Asian-Pacific environmental remote sensing conference, Honolulu (2004)Google Scholar
  33. W.L. Jones, L.C. Schroeder, F.J. Wentz, Microwave scatterometer measurements of oceanic wind vector, Oceanography from space, in Proceedings of the symposium, Venice, Italy; United States, 26–30 May 1980. (1981), pp. 553–562Google Scholar
  34. I.R. Joughin, R. Kwok, M.A. Fahnestock, Interferometric estimation of the threedimensional ice-flow velocity vector using ascending and descending passes. IEEE Trans. Geosci. Remote Sens. 36, 25–37 (1998)Google Scholar
  35. Y.J. Kaufman, The atmospheric effect on remote sensing and its correction, in Theory and applications of optical remote sensinged. by G. Asrar (Wiley, New York, 1989), pp. 336–428Google Scholar
  36. G. Kelly, The relative contributions of the various space observing system, in Proceedings of 2007 EUMETSAT Meteoroligical Satellite Conference (2007)Google Scholar
  37. Y.S. Kotchenova, F.E. Vermote, R. Matarrese, F.J. Klemm Jr., Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: path radiance. Appl. Opt. 45(26), 6762–6774 (2006)Google Scholar
  38. E.R. Kursinski, G.A. Hajj, J.T. Schofield, R.P. Linfield, K.R. Hardy, Observing the earth’s atmosphere with radio occultation measurements using the global positioning system. J. Geophys. Res. 102(D19), 23429–23465 (1997)Google Scholar
  39. G.S.E. Lagerloef, Introduction to the special section: The role of surface salinity on upper ocean dynamics, air sea interaction and climate. J. Geophys. Res. 107(C12), 8000 (2002). doi:10.1029/2002JC001669Google Scholar
  40. G. Lagerloef, R. Schmitt, Role of ocean salinity in climate and near-future satellite measurements: Meeting Report. EOS, Trans. Am. Geophys. Un. 87(43), 466–467 (2006)Google Scholar
  41. J.S. Levine, W.S. Cofer, D.R. Cahoon Jr., E.L. Winstead, The global impact of biomass burning. Environ Sci Technol, 1995. http://asd-www.larc.nasa.gov/biomass_burn/globe_ impact.html
  42. D. Luman, T. Tweddale, Assessment and potential of the 2007 USDA-NASS Cropland data layer for statewide annual land cover applications, INHS technical report 2008 (49), p. 21Google Scholar
  43. S.N. Madsen, H.A. Zebker, Imaging Radar Interferometry. Principles & Applications of Imaging Radar, 3rd edn. Manual of Remote Sensing, vol. 2 (Wiley, New York, 1998)Google Scholar
  44. E.P. McClain, W.G. Pichel, C.C. Walton, Comparative performance of AVHRR-based multichannel sea surface temperatures. J. Geophys. Res. 90, 11587–11601 (1985)Google Scholar
  45. T. Meissner, F. Wentz, An updated analysis of the ocean surface wind direction signal in passive microwave brightness temperature. IEEE Trans. Geosci. Remote Sens. 40(6), 1230–1240 (2002)Google Scholar
  46. W.G. Melbourne, et al., The application of spaceborne GPS to atmospheric limb sounding and global change monitoring. (JPL Publication 94–18, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, 1994), p. 147Google Scholar
  47. G. Mie, Ann. Physik 25(4), 377 (1908)Google Scholar
  48. G. Mie, Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Leipzig, Ann. Phys. 330, 377–445 (1908)Google Scholar
  49. J.J. Mohr, N. Reeh, S.N. Madsen, Three dimensional glacial flow and surface elevation measured with radar interferometry. Nature 391, 273–276 (1998)Google Scholar
  50. J.L. Monteith, Solar radiation and productivity in tropical ecosystems. J. Appl. Ecol. 9, 747–766 (1972)Google Scholar
  51. F. Naderi, M.H. Freilich, D.G. Long, Spaceborne radar measurement of wind velocity over the ocean – an overview of the NSCAT scatterometer system. Proc. IEEE, 9(6) 850–866 (1991)Google Scholar
  52. T. Nakajima, et al., EORC bulletin, Technical report No.15, 360 p., ISSN 1346–7913, JAXA/EORC, GSS reference handbook (RSTAR reference handbook) (2004)Google Scholar
  53. T.Y. Nakajima, A. Higurashi, T. Nakajima, S. Fukuda, S. Katagiri, Development of the cloud and aerosol retrieval algorithms for ADEOS-II/GLI mission. J. Remote Sens. Soc. Jpn 29, 60–69 (2009)Google Scholar
  54. R.R. Nemani, C.D. Keeling, H. Hashimoto, W.M. Jolly, S.C. Piper, C.J. Tucker, R.B. Myneni, S.W. Running, Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300, 1560–1563 (2003)Google Scholar
  55. M. Neubert, Segment-based analysis of high resolution satellite and laser scanning data, in sustainability in the information society, in Proceedings of the 15th International Symposium Informatics for Environmental Protection, Zurich, 10–12 Oct 2001, by eds. L.M. Hilty, P.W. Gilgen (Mtropolis, Marburg, 2001), pp. 379–386Google Scholar
  56. Y.-J. Park, K. Ruddick, Model of remote-sensing reflectance including bidirectional effects for case 1 and case 2 waters. Appl. Opt. 44, 1236–1249 (2005)Google Scholar
  57. R.T. Rabus, D.R. Fatland, Comparison of SAR-interferometric and surveyed velocities on a mountain glacier: Black Rapids Glacier Alaska U.S.A. J. Glaciol. 46, 119–128 (2000)Google Scholar
  58. L. Rayleigh (J.W. Strutt), On the light from the sky, its polarization and colour. Philos. Mag. 41, 107–120, 274–279 (1871)Google Scholar
  59. C.D. Rodgers, Inverse method for atmospheric sounding (World Scientific publishing, New York, 2000)Google Scholar
  60. L.S. Rothman, I.E. Gordon, A. Barbe et al., The HITRAN 2008 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 110, 533–572 (2009)Google Scholar
  61. D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning internal representations by error propagation, in Parallel distributed processing, ed. by J.L. McCleland, D.E. Rumelhart, The PDP Research group, vol. 1 (MIT Press, Cambridge, MA, 1986a)Google Scholar
  62. D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representations by back-propagating errors. Nature 323–9, 633–536 (1986b)Google Scholar
  63. S.W. Running, S.T. Gower, FOREST-BGC, a general model of forest ecosystem processes for regional applications. II. Dynamic carbon allocation and nitrogen budgets. Tree Physiol. 9, 147–160 (1991)Google Scholar
  64. S.W. Running, P.E. Thornton, R. Nemani, J.M. Glassy, Global terrestrial gross and net primary productivity from the Earth Observing System, in Methods in ecosystem science, ed. by O. Sala, R. Jackson, H. Mooney (Springer, New York, 2000), pp. 44–57Google Scholar
  65. S.W. Running, R.R. Nemani, F.A. Heinsch, M. Zhao, M. Reeves, H. Hashimoto, A continuous satellite–derived measure of global terrestrial primary production. Bioscience 54, 547–560 (2004)Google Scholar
  66. C. Schaaf, A. Strahler, et al., MODIS reflectance albedo and reflectance anisotropy, in Proceedings of land and vegetation direct readout workshop (2007)Google Scholar
  67. B. Schölkopf, A. Smola, K.-R. Mülller, Nonlinear component analysis as a Kernel Eigenvalue Problem. Technical Report No. 44. Max-Planck-Institut für biologische Kybernetik, Tübingen (18 p, 239 K). The final version of this article is published in Neural Comput. 10(5), 1299–1319 (1996), (MIT Press, 1998)Google Scholar
  68. D.A. Siegel, M. Wang, S. Maritorena, W. Robinson, Atmospheric correction of satellite ocean color imagery: the balack pixel assumption. Appl. Opt. 39, 3582–3590 (2000)Google Scholar
  69. S. Sitch, The role of vegetation dynamics in the control of atmospheric CO2 content. Ph. D. thesis, Lund University, Sweden, (2000) p. 213Google Scholar
  70. A. Smola, Regression estimation with support vector learning machines. Master’s thesis, Technische Universität München (1996)Google Scholar
  71. M. Takagi, H. Shimoda (eds.), Handbook of image analysis(in Japanese) (University of Tokyo Press, Tokyo, 2004), p. 1327Google Scholar
  72. M. Takagi, H. Shimoda (eds.) Handbook of Image Analysis(revised ed.) (in Japanese), (University of Tokyo Press, Tokyo, 2004), p.198Google Scholar
  73. H. Tian, J.M. Melillo, D.W. Kicklighter, A.D. McGuire, J. Helfrich, The sensitivity of terrestrial carbon storage to historical climate variability and atmospheric CO2 in the United States. Tellus 51B, 414–452 (1999)Google Scholar
  74. US CLIVAR Office, Report of the US CLIVAR Salinity Working Group. US CLIVAR Report 2007–1, Washington, DC, 46 p (2007), http://www.usclivar.org/Pubs/Salinity_final_report. Accessed 27 Jan 2008
  75. V. Vapnik, The nature of statistical learning theory (Springer, New York, 1995)Google Scholar
  76. E.F. Vermote, N. El Saleoql et al., Atmospheric correction of visible to middle-infrared EOS-MODIS data over land surfaces: Background, operational algorithm and validation. JGR 102(D14), 17131–17141 (1997)Google Scholar
  77. T. Westberry, M.J. Behrenfeld, D.A. Siegel, E. Boss, Carbon-based primary productivity modeling with vertically resolved photoacclimation. Global Biogeochem Cy. 22, GB2024 (2008)Google Scholar
  78. H.A. Zebker, R.M. Goldstein, Topographic mapping from interferometric SAR observations. J. Geophys. Res 91, 4993–4999 (1986)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Earth Observation Research CenterAerospace Exploration AgencyTsukubaJapan
  2. 2.Research & Information CenterTokai UniversityShibuya-kuJapan

Personalised recommendations