Skip to main content

High-Temperature Ceramic Electrochemical Sensors

  • Reference work entry
  • First Online:
Encyclopedia of Applied Electrochemistry

Introduction

Chemical sensors are widely used for health and safety (e.g., medical diagnostics, air quality monitoring, and detection of toxic, flammable, and explosive gases), energy efficiency, and emission control in combustion processes and industrial process control for improved productivity. There is a continuing need for the development of sensitive, selective, and low-cost sensors for applications in automotive, aerospace, food processing, heat treating, metal processing and casting, glass, ceramic, pulp and paper, utility and power, and chemical and petrochemical processing industries. Over the last 15 years, our focus at the Center for Industrial Sensors and Measurements (CISM) has been on the development of a series of high-temperature gas sensors specifically for combustion processes [1–10]. The underlying theme in our sensor development has been the use of materials science and chemistry to promote high-temperature performance with selectivity. We have developed both the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Birkefeld LD, Azad AM, Akbar SA (1992) Carbon monoxide and hydrogen detection by anatase modification of titanium dioxide. J Am Ceram Soc 75:2694–2698

    Google Scholar 

  2. Savage N, Chwieroth B, Ginwalla A, Patton BR, Akbar SA, Dutta PK (2001) Composite n-p semiconducting titanium oxides as gas sensors. Sens Actuators B 79:17–27

    CAS  Google Scholar 

  3. Szabo NF, Du H, Akbar SA, Soliman AA, Dutta PK (2002) Microporous zeolite modified Yttria Stabilized Zirconia (YSZ) sensors for Nitric Oxide (NO) determination in harsh environments. Sens Actuators B 82:142–149

    CAS  Google Scholar 

  4. Kohli A, Wang CC, Akbar SA (1999) Niobium pentoxide as a lean-range oxygen sensor. Sens Actuators B 56:121–128

    CAS  Google Scholar 

  5. Chowdhury AKMS, Akbar SA, Kapileshwar S, Schorr JR (2001) A rugged oxygen gas sensor with solid reference for high temperature applications. J Electrochem Soc 148:G91–G94

    CAS  Google Scholar 

  6. Narayanan B, Akbar SA, Dutta PK (2002) A phosphate-based proton conducting solid electrolyte hydrocarbon gas sensor. Sens Actuators B 87(3):480–486

    CAS  Google Scholar 

  7. Reddy C, Dutta PK, Akbar SA (2003) Detection of CO in a reducing, hydrous environment using CuBr as electrolyte. Sens Actuators B 92:351–355

    Google Scholar 

  8. Szabo NF, Dutta PK (2003) Strategies for total NOx measurement with minimal CO interference utilizing a microporous zeolitic catalytic filter. Sens Actuators B 88(2):168–177

    CAS  Google Scholar 

  9. Lee C, Akbar SA, Park CO (2001) Potentiometric type CO2 gas sensor with lithium phosphorous oxynitride electrolyte. Sens Actuators B 80:234–242

    CAS  Google Scholar 

  10. Lee C, Dutta PK, Ramamoorthy R, Akbar SA (2006) Study of mixed Ionic and electronic conduction in Li3PO4 electrolyte for a CO2 gas sensor. J Electrochem Soc 153:H4–H14

    CAS  Google Scholar 

  11. Seinfeld JH, Pandis S (1998) Atmospheric chemistry and physics: from air pollution to climate change. Wiley, New York

    Google Scholar 

  12. Menil F, Coillard V, Lucat C (2000) Critical review of nitrogen monoxide sensors for exhaust gases of lean burn engines. Sens Actuators B 67:1–23

    CAS  Google Scholar 

  13. Raj ES, Pratt KFE, Skinner SJ, Parkin IP, Kilner JA (2006) High conductivity La2−xSrxCu1−y(Mg, Al)yO4 solid state metal oxide gas sensors with the K2NiF4 structure. Chem Mater 18:3351–3355

    CAS  Google Scholar 

  14. Gurlo A, Barsan N, Weimar U, Ivanovskaya M, Taurino A, Siciliano P (2003) Polycrystalline well-shaped blocks of indium oxide obtained by the sol–gel method and their gas-sensing properties. Chem Mater 15:4377–4383

    CAS  Google Scholar 

  15. Yoo J, Van Assche FM, Wachsman ED (2006) Temperature-programmed reaction and desorption of the sensor elements of a WO3/YSZ/Pt potentiometric sensor. J Electrochem Soc 153:H115–H121

    CAS  Google Scholar 

  16. Miura N, Lu G, Yamazoe N (2000) Progress in mixed-potential type devices based on solid electrolyte for sensing redox gases. Solid State Ion 136:533–542

    Google Scholar 

  17. Yang J-C, Dutta PK (2007) Promoting selectivity and sensitivity for a high temperature YSZ-based electrochemical total NOx sensor by using a Pt-loaded zeolite Y filter. Sens Actuators B 125(1):30–39

    CAS  Google Scholar 

  18. Dutta A, Kaabbuathong N, Grilli ML, Di Bartolomeo E, Traversa E (2003) Study of YSZ-based electrochemical sensors with WO3 electrodes in NO2 and CO environments. J Electrochem Soc 150:H33–H37

    CAS  Google Scholar 

  19. Szabo NF, Dutta PK (2004) Correlation of sensing behavior of mixed potential sensors with chemical and electrochemical properties of electrodes. Solid State Ion 171:183–190

    CAS  Google Scholar 

  20. Yang J-C, Dutta PK (2010) High temperature potentiometric NO2 sensor with asymmetric sensing and reference Pt electrodes. Sens Actuators B 143(2):459–463

    CAS  Google Scholar 

  21. Yang J-C, Dutta PK (2007) Influence of solid-state reactions at the electrode-electrolyte interface on high-temperature potentiometric NOx-gas sensors. J Phys Chem C 111(23):8307–8313

    CAS  Google Scholar 

  22. Yang J-C, Dutta PK (2009) Solution-based synthesis of efficient WO3 sensing electrodes for high temperature potentiometric NOx sensors. Sens Actuators B 136(2):523–529

    CAS  Google Scholar 

  23. Hunter GW, Xu JC, Biaggi-Labiosa AM, Laskowski D, Dutta PK, Mondal SP, Ward BJ, Makel DB, Liu CC, Chang CW, Dweik RA (2011) Smart sensor systems for human health breath monitoring applications. J Breath Res 5:037111

    CAS  Google Scholar 

  24. Mondal SP, Dutta PK, Hunter GW, Ward BJ, Laskowski D, Dweik RA (2011) Development of high sensitivity potentiometric NOx sensor and its application to breath analysis. Sens Actuators B 158:292–298

    CAS  Google Scholar 

  25. Linkins D, Lewis D, Frank R, Weiss J (1997) TVA’s Kingston Unit 9 Distributed Control System (DCS) retrofit benefit documentation. TVA Technol Adv 1(2):69–75

    CAS  Google Scholar 

  26. Ramamoorthy R, Dutta PK, Akbar SA (2003) Oxygen sensors: materials, methods, designs and applications. J Mater Sci 38(21):4271–4282

    CAS  Google Scholar 

  27. Maskell WC, Steele BCH (1986) Solid state potentiometric oxygen gas sensors. J Appl Electrochem 16(4):475–489

    CAS  Google Scholar 

  28. Spirig JV, Ramamoorthy R, Akbar SA, Routbort JL, Singh D, Dutta PK (2007) High temperature zirconia oxygen sensor with sealed metal/metal oxide internal reference. Sens Actuators B 124(1):192–201

    CAS  Google Scholar 

  29. Spirig JV, Routbort JL, Singh D, King G, Woodward PM, Dutta PK (2008) Joining of highly aluminum-doped lanthanum strontium manganese oxide with tetragonal zirconia by plastic deformation. Solid State Ion 179(15–16):550–557

    CAS  Google Scholar 

  30. Mohamed FA, Li Y (2001) Creep and superplasticity in nanocrystalline materials: current understanding and future prospects. Mater Sci Eng A 298(1–2):1–15

    Google Scholar 

  31. Gutierrez-Mora F, Goretta KC, Majumdar S, Routbort JL, Grimdisch M, Dominguez-Rodriguez A (2002) Influence of internal stresses on superplastic joining of zirconia-toughened alumina. Acta Mater 50:3475–3486

    CAS  Google Scholar 

  32. Gutierrez-Mora F, Dominguez-Rodriguez A, Routbort JL, Chaim R, Guiberteau F (1999) Joining of yttria-tetragonal stabilized zirconia polycrystals using nanocrystals. Scr Mater 41(5):455–460

    Google Scholar 

  33. Dominguez-Rodriguez A, Gutierrez-Mora F, Jimenez-Melendo M, Routbort JL, Chaim R (2001) Current understanding of superplastic deformation of Y-TZP and its application to joining. Mater Sci Eng A 302(1):154–161

    Google Scholar 

  34. Zosel J et al (2011) Topical review-the measurement of dissolved and gaseous carbon dioxide concentration. Meas Sci Technol 22:072001

    Google Scholar 

  35. Lee C, Szabo N, Ramamoorthy R, Dutta P, Akbar S (2006) Solid-state electrochemical sensors: opportunities and challenges. In: Grimes CA, Dickey EC, Pishko MV (eds) Encyclopedia of sensors, Stevenson Ranch, CA: American Scientific Publisher, vol 10. pp 1–20

    Google Scholar 

  36. Hunter GW, Dweik RA (2008) Applied breath analysis: an overview of the challenges and opportunities in developing and testing sensor technology for human health monitoring in aerospace and clinical applications. J Breath Res 2:037020

    Google Scholar 

  37. Chen S-J et al (2007) Fire detection using smoke and gas sensors. Fire Saf J 42:507–515

    CAS  Google Scholar 

  38. Dixon NM, Kell DB (1989) Review article-the control and measurement of CO2 during fermentations. J Microbiol Methods 10:155–176

    CAS  Google Scholar 

  39. Auble DL, Meyers TP (1992) An open path, fast response infrared absorption gas analyzer for H2O and CO2. Bound-Layer Meterol 59(3):243–256

    Google Scholar 

  40. Holzinger M, Maier J, Sitte W (1997) Potentiometric detection of complex gases: application to CO2. Solid State Ion 94:217–225

    CAS  Google Scholar 

  41. Mulier M et al (2009) Development of a compact CO2 sensor based on near-infrared laser technology for enological application. Appl Phys B-Lasers Opt 94:725–733

    CAS  Google Scholar 

  42. Lee I, Akbar SA, Dutta PK (2009) High temperature potentiometric carbon dioxide sensor with minimal interference to humidity. Sens Actuators B 142:337–341

    CAS  Google Scholar 

  43. Inaguma Y et al (1993) High ionic conductivity in lithium lanthanum titanate. Solid State Commun 86(10):689–693

    CAS  Google Scholar 

  44. Yoon J, Hunter G, Akbar SA, Dutta PK (2013) Interface reaction and its effect on performance of a CO2 sensor based on Li0.35La0.55TiO3 electrolyte and Li2CO3 sensing electrode. Sensors and Actuators B 182: 95–103

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheikh A. Akbar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Dutta, P.K., Akbar, S.A. (2014). High-Temperature Ceramic Electrochemical Sensors. In: Kreysa, G., Ota, Ki., Savinell, R.F. (eds) Encyclopedia of Applied Electrochemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6996-5_79

Download citation

Publish with us

Policies and ethics