Skip to main content

Microbial Electrosynthesis

Introduction

The combination of the advantages of biological components (e.g., reaction specificities or self-replication) and electrochemical processes to bioelectrochemical systems offers the opportunity to develop efficient and sustainable processes. In bioelectrochemical systems (BES), at least one electrode reaction is catalyzed by living microorganisms or isolated compounds, e.g., enzymes. Besides electro-enzymatic processes [13], intact microorganisms can be used to produce energy and chemicals. The application of a microbial electrocatalyst in microbial fuel cells (MFC) and microbial electrolysis (MEC) has been investigated for several years. In these applications microorganisms are used to oxidize organic or inorganic substances at an anode to generate electrical power or H2. The discovery that electrical current can also stimulate microbial metabolism has led to a range of applications in bioremediation [4, 5] and in the production of fuels and chemicals. Notably, the...

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4419-6996-5_526
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   1,199.99
Price excludes VAT (USA)
  • ISBN: 978-1-4419-6996-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   1,599.99
Price excludes VAT (USA)
Microbial Electrosynthesis, Fig. 1
Microbial Electrosynthesis, Fig. 2

References

  1. Cekic SZ, Holtmann D, Güven G, Mangold K-M, Schwaneberg U, Schrader J (2010) Mediated electron transfer with P450cin. Electroch Commun 12(11):1547–1550

    CAS  Google Scholar 

  2. Krieg T, Hüttmann S, Mangold K-M, Schrader J, Holtmann D (2011) Gas diffusion electrode as novel reaction system for an electro-enzymatic process with chloroperoxidase. Green Chem 13:2686–2689

    CAS  Google Scholar 

  3. Lütz S, Vuorilehto K, Liese A (2007) Process development for the electroenzymatic synthesis of (R)-methylphenylsulfoxide by use of a 3-dimensional electrode. Biotechnol Bioeng 98(3):525–534

    Google Scholar 

  4. Tiehm A, Lohner ST, Augenstein T (2009) Effects of direct electric current and electrode reactions on vinyl chloride degrading microorganisms. Electrochim Acta 54(12):3453–3459

    CAS  Google Scholar 

  5. Lohner ST, Becker D, Mangold K-M, Tiehm A (2011) Sequential reductive and oxidative biodegradation of chloroethenes stimulated in a coupled bioelectro-process. Environ Sci Technol 45(15):6491–6497

    CAS  Google Scholar 

  6. Rabaey K, Rozendal RA (2010) Microbial electrosynthesis – revisiting the electrical route for microbial production. Nat Rev Micro 8(10):706–716

    CAS  Google Scholar 

  7. Li H, Opgenorth PH, Wernick DG, Rogers S, Wu T-Y, Higashide W, Malati P, Huo Y-X, Cho KM, Liao JC (2012) Integrated electromicrobial conversion of CO2 to higher alcohols. Science 335(6076):1596

    CAS  Google Scholar 

  8. Pandit A, Mahadevan R (2011) In silico characterization of microbial electrosynthesis for metabolic engineering of biochemicals. Microb Cell Fact 10(1):76

    CAS  Google Scholar 

  9. Rabaey K, Girguis P, Nielsen LK (2011) Metabolic and practical considerations on microbial electrosynthesis. Curr Opin Biotechnol 22(3):371–377

    CAS  Google Scholar 

  10. Cole EB, Bocarsly AB (2010) Photochemical, electrochemical, and photoelectrochemical reduction of carbon dioxide, in carbon dioxide as chemical feedstock. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, p 291–316

    Google Scholar 

  11. Gattrell M, Gupta N, Co A (2006) A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. J Electroanal Chem 594(1):1–19

    CAS  Google Scholar 

  12. Oloman C, Li H (2008) Electrochemical processing of carbon dioxide. ChemSusChem 1(5):385–391

    CAS  Google Scholar 

  13. Nevin KP, Woodard TL, Franks AE, Summers ZM, Lovley DR (2010) Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio 1(2):e00103-10

    Google Scholar 

  14. Aulenta F, Reale P, Catervi A, Panero S, Majone M (2008) Kinetics of trichloroethene dechlorination and methane formation by a mixed anaerobic culture in a bio-electrochemical system. Electrochim Acta 53(16):5300–5305

    CAS  Google Scholar 

  15. Lovley DR, Nevin KP (2013) Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity. Curr Opin Biotechnol 24:1–6

    Google Scholar 

  16. Ross DE, Flynn JM, Baron DB, Gralnick JA, Bond DR (2011) Towards electrosynthesis in Shewanella: energetics of reversing the Mtr pathway for reductive metabolism. PLoS One 6(2):e16649

    CAS  Google Scholar 

  17. Liu H, Matsuda S, Hashimoto K, Nakanishi S (2012) Flavins secreted by bacterial cells of Shewanella catalyze cathodic oxygen reduction. ChemSusChem 5(6):1054–1058

    CAS  Google Scholar 

  18. Kotloski NJ, Gralnick JA (2013) Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis. mBio 4(1):e00553–12

    Google Scholar 

  19. Cologgi DL, Lampa-Pastirk S, Speers AM, Kelly SD, Reguera G (2011) Extracellular reduction of uranium via Geobacter conductive pili as a protective cellular mechanism. Proc Natl Acad Sci 108(37):15248–15252

    CAS  Google Scholar 

  20. Bond DR, Strycharz-Glaven SM, Tender LM, Torres CI (2012) On electron transport through Geobacter biofilms. ChemSusChem 5(6):1099–1105

    CAS  Google Scholar 

  21. Lovley DR (2008) The microbe electric: conversion of organic matter to electricity. Curr Opin Biotechnol 19(6):564–571

    CAS  Google Scholar 

  22. Malvankar NS, Vargas M, Nevin KP, Franks AE, Leang C, Kim B-C, Inoue K, Mester T, Covalla SF, Johnson JP, Rotello VM, Tuominen MT, Lovley DR (2011) Tunable metallic-like conductivity in microbial nanowire networks. Nat Nano 6(9):573–579

    Google Scholar 

  23. El-Naggar MY, Wanger G, Leung KM, Yuzvinsky TD, Southam G, Yang J, Lau WM, Nealson KH, Gorby YA (2010) Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proc Natl Acad Sci 107(42):18127–18131

    CAS  Google Scholar 

  24. Mehta T, Coppi MV, Childers SE, Lovley DR (2005) Outer membrane c-type cytochromes required for Fe(III) and Mn(IV) oxide reduction in Geobacter sulfurreducens. Appl Environ Microbiol 71(12):8634–8641

    CAS  Google Scholar 

  25. Liu Y, Bond DR (2012) Long-distance electron transfer by G. Sulfurreducens biofilms results in accumulation of reduced c-type cytochromes. ChemSusChem 5(6):1047–1053

    CAS  Google Scholar 

  26. von Canstein H, Ogawa J, Shimizu S, Lloyd JR (2008) Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl Environ Microbiol 74(3):615–623

    Google Scholar 

  27. Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR (2008) Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci 105(10):3968–3973

    CAS  Google Scholar 

  28. Park DH, Laivenieks M, Guettler MV, Jain MK, Zeikus JG (1999) Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production. Appl Environ Microbiol 65(7):2912–2917

    CAS  Google Scholar 

  29. Lovley DR (2006) Bug juice: harvesting electricity with microorganisms. Nat Rev Micro 4(7):497–508

    CAS  Google Scholar 

  30. Jensen HM, Albers AE, Malley KR, Londer YY, Cohen BE, Helms BA, Weigele P, Groves JT, Ajo-Franklin CM (2010) Engineering of a synthetic electron conduit in living cells. Proc Natl Acad Sci 107(45):19213–19218

    CAS  Google Scholar 

  31. Zhang T, Nie H, Bain TS, Lu H, Cui M, Snoeyenbos-West OL, Franks AE, Nevin KP, Russell TP, Lovley DR (2013) Improved cathode materials for microbial electrosynthesis. Energ Environ Sci 6(1):217–224

    CAS  Google Scholar 

  32. Gong Y, Ebrahim A, Feist AM, Embree M, Zhang T, Lovley D, Zengler K (2012) Sulfide-driven microbial electrosynthesis. Environ Sci Technol 47(1):568–573

    Google Scholar 

  33. Cheng S, Xing D, Call DF, Logan BE (2009) Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol 43(10):3953–3958

    CAS  Google Scholar 

  34. Nevin KP, Hensley SA, Franks AE, Summers ZM, Ou J, Woodard TL, Snoeyenbos-West OL, Lovley DR (2011) Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms. Appl Environ Microbiol 77(9):2882–2886

    CAS  Google Scholar 

  35. Park DH, Zeikus JG (1999) Utilization of electrically reduced neutral Red by Actinobacillus succinogenes: physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J Bacteriol 181(8):2403–2410

    CAS  Google Scholar 

  36. Villano M, Aulenta F, Ciucci C, Ferri T, Giuliano A, Majone M (2010) Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture. Bioresour Technol 101(9):3085–3090

    CAS  Google Scholar 

  37. Cord-Ruwisch R, Seitz H-J, Conrad R (1988) The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor. Arch Microbiol 149(4):350–357

    CAS  Google Scholar 

  38. Lovley DR, Nevin KP (2011) A shift in the current: new applications and concepts for microbe-electrode electron exchange. Curr Opin Biotechnol 22(3):441–448

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Holtmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Holtmann, D., Hannappel, A., Schrader, J. (2014). Microbial Electrosynthesis. In: Kreysa, G., Ota, Ki., Savinell, R.F. (eds) Encyclopedia of Applied Electrochemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6996-5_526

Download citation