Encyclopedia of Applied Electrochemistry

2014 Edition
| Editors: Gerhard Kreysa, Ken-ichiro Ota, Robert F. Savinell

High-Temperature CO2 Electrolysis

  • Mogens Bjerg Mogensen
Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-6996-5_463

Introduction

High temperature is here defined as temperatures of 500 °C or higher. There are three different electrochemical cells that can be used for CO 2 electrolysis, and there are three main arguments in favor of high-temperature electrolysis of CO 2 into CO or CH 4, and O 2. Details and electrochemical reactions are given below.

Cell Types:

  1. 1.

    Solid oxide electrolyzer cells (SOEC) have a solid oxide ion conductor as electrolyte, often yttria-stabilized zirconia (YSZ). The cathode (CO evolution, negative) is often a Ni-YSZ composite called a cermet. The anode (O2 evolution, positive) most often consists of a composite of YSZ electrolyte and an electron-conducting perovskite-structured oxide, e.g., (La0.75Sr0.25)0.95MnO3 [1].

     
  2. 2.

    Solid proton-conducting electrolyzer cell (SPCEC) has a proton-conducting solid oxide electrolyte, e.g., yttria-doped barium zirconate, BaZr0.85Y0.15H0.15O3, i.e., ceramics that can take up H2O and become proton conducting [2]. Electrodes may be similar to...

This is a preview of subscription content, log in to check access.

References

  1. 1.
    Jensen SH, Larsen PH, Mogensen M (2007) Hydrogen and synthetic fuel production from renewable energy sources. Int J Hydrogen Energy 32:3253Google Scholar
  2. 2.
    Bonanos N (2001) Oxide-based protonic conductors: point defects and transport properties. Solid State Ionics 145:265Google Scholar
  3. 3.
    Kaplan V, Wachtel E, Gartsman K, Feldman Y, Lubomirsky I (2010) Conversion of CO2 to CO by electrolysis of molten lithium carbonate. J Electrochem Soc 157:B552Google Scholar
  4. 4.
    National Institute of Standards and Technology (NIST) (2008) NIST Chemistry WebBook. http://webbook.nist.gov/chemistry/
  5. 5.
    Mogensen M, Lybye D, Kammer K, Bonanos N (2005) Ceria revisited: electrolyte or electrode material? In: Singhal SC, Mizusaki J (eds) Proceedings 9th international symposium on solid oxide fuel cells (SOFC IX), vol PV 2005–07, The Electrochemical Society, Pennington, p 1068Google Scholar
  6. 6.
    Baur E, Preis H (1937) Uber brennstoff-ketten mit festleitern. Zeitschrift für Elektrochemie 43:727Google Scholar
  7. 7.
    Weissbart J, Smart W, Wydeven T (1969) Oxygen reclamation from carbon dioxide using a solid oxide electrolyte. Aerospace Med 40:136Google Scholar
  8. 8.
    Isenberg AO (1981) Energy conversion via solid oxide electrolyte electrochemical cells at high temperatures. Solid State Ionics 3–4:431Google Scholar
  9. 9.
    Sridhar KR, Vaniman BT (1997) Oxygen production on Mars using solid oxide electrolysis. Solid State Ionics 93:321Google Scholar
  10. 10.
    Stoots CM, O’Brien JE, Condie KG, Hartvigsen JJ (2010) High-temperature electrolysis for large-scale hydrogen production from nuclear energy – Experimental investigations. Int J Hydrogen Energy 35:4861Google Scholar
  11. 11.
    Ebbesen SD, Høgh J, Nielsen KA, Nielsen JU, Mogensen M (2011) Durable SOC stacks for production of hydrogen and synthesis gas by high temperature electrolysis. Int J Hydrogen Energy 36:7363Google Scholar
  12. 12.
    Schefold J, Brisse A, Zahid M, Ouweltjes JP, Nielsen JU (2011) Long term testing of short stacks with solid oxide cells for water electrolysis. ECS Trans 35:2915Google Scholar
  13. 13.
    Schefold J, Brisse A, Tietz F (2012) Nine thousand hours of operation of a solid oxide cell in steam electrolysis mode. J Electrochem Soc 159:A137Google Scholar
  14. 14.
    Hauch A, Ebbesen SD, Jensen SH, Mogensen M (2008) Highly efficient high temperature electrolysis. J Mater Chem 18:2331Google Scholar
  15. 15.
    Knibbe R, Traulsen ML, Hauch A, Ebbesen SD, Mogensen M (2010) Solid oxide electrolysis cells: degradation at high current densities. J Electrochem Soc 157:B1209Google Scholar
  16. 16.
    Ebbesen SD, Mogensen M (2011) Method and system for purification gas streams for solid oxide cells. EPO patent EP2362475A1Google Scholar
  17. 17.
    Hansen JB (2012) Process for converting biogas to a gas rich in methane. Patent WO/2012/003849, published 12 Jan 2012Google Scholar
  18. 18.
    Stuart PA, Unno T, Kilner JA, Skinner SJ (2008) Solid oxide proton conducting steam electrolysers. Solid State Ionics 179:1120Google Scholar
  19. 19.
    Xie K, Zhang Y, Meng G, Irvine JTS (2011) Electrochemical reduction of CO2 in a proton conducting solid oxide electrolyser. J Mater Chem 21:195Google Scholar
  20. 20.
    Licht S Advanced materials (2011) Efficient solar-driven synthesis, carbon capture, and desalinization, STEP: solar thermal electrochemical production of fuels, metals, Bleach doi:10.1002/adma.201103198Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Energy Conversion and Storage, Technical University of DenmarkRoskildeDenmark