Skip to main content

Optimization of Electrolyte Properties by Simplex Exemplified for Conductivity of Lithium Battery Electrolytes

  • Reference work entry
  • First Online:

Definition and Main Properties

Optimization of physical properties of a component of a device such as the conductivity of an electrolyte of a battery for storage of electrical energy via transformation to chemical energy is a key issue in developing new devices or improving existing ones.

Typical electrolytes of lithium-ion batteries are composed of a blend of several different solvents, at least one salt and several additives. Therefore, it is an expensive and time-consuming task to optimize the electrolyte if a single-step variation approach is used to increase the conductivity of the resulting electrolyte. To reduce the effort for this task, experimental design methods (DoE, Design of Experiments) can be used. Depending on knowledge about influencing factors, these methods can be divided into two groups. If already sufficient knowledge exists, sequential optimization procedures can be used for finding the optimum. If little or nothing is known about the influencing factors,...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Verband der Automobilindustrie (2003) Qualitätsmanagement in der Automobilindustrie, Sicherung der Qualität während der Produktrealisierung Methoden und Verfahre. VDA, Oberursel

    Google Scholar 

  2. Kleppmann W (2006) Taschenbuch versuchsplanung. Hanser, München

    Google Scholar 

  3. Weisstein EW (1999) CRC concise encyclopedia of mathematics. CRC Press, Boca Raton

    Google Scholar 

  4. Spedley W, Hext GR, Himsworth FR (1962) Sequential application of simplex designs in optimisation and evolutionary operation. Technometrics 4:441

    Google Scholar 

  5. Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308

    Google Scholar 

  6. Aberg RA, Gustavson AGT (1982) Design and evaluation of modified simplex methods. Anal Chim Acta 144:39

    Google Scholar 

  7. User’s Guide to Multisimplex (Version 2.1). Grabitech Solutions AB Sundsvall, Sweden

    Google Scholar 

  8. Zadeh LA (1965) Fuzzy sets. Info Contr 8:338

    Google Scholar 

  9. Krabs W (1983) Einführung in die lineare und nichtlineare optimierung für ingenieure. B.G.Teubner, Stuttgart

    Google Scholar 

  10. Richter C (1988) Optimierungsverfahren und BASIC programme. Akademie Verlag, Berlin

    Google Scholar 

  11. Rao SS (1978) Optimization, theory and application. Wiley Eastern Ltd, New Dehli

    Google Scholar 

  12. Schweiger HG, Multerer M, Schweizer-Berberich M, Gores HJ (2005) Finding conductivity optima of battery electrolytes by conductivity measurements guided by a simplex algorithm. Electrochem Soc 152:A577

    CAS  Google Scholar 

  13. Moreno CW, Eilebrecht B (1992) Qualität und Zuverlässigkeit 37:53

    Google Scholar 

  14. Thomas KE, Newman J, Darling RM (2002) Mathematical modeling of lithium batteries. In: Van Schalkwijk W, Scrosati B (eds) Advances in lithium-ion batteries. Kluwer, New York

    Google Scholar 

  15. García RE, Chiang YM, Carter WC, Limthongkul P, Bishop CM (2005) Microstructural modeling and design of rechargeable lithium-ion batteries. J Electrochem Soc 152:A255

    Google Scholar 

  16. Song L, Evand JW (2000) Electrochemical-thermal model of lithium polymer batteries. J Electrochem Soc 147:2086

    CAS  Google Scholar 

  17. Georén P, Lindbergh G (2004) Characterisation and modelling of the transport properties in lithium battery gel electrolytes: Part I. The binary electrolyte PC/LiClO4. Electrochim Acta 49:3497

    Google Scholar 

  18. Georén P, Lindbergh G (2001) Characterisation and modelling of the transport properties in lithium battery polymer electrolytes. Electrochim Acta 47:577

    Google Scholar 

  19. Bottle G, Subramanian VR, With RE (2000) Mathematical modeling of secondary lithium batteries. Electrochim Acta 45:2595

    Google Scholar 

  20. Nazri GA, Pistoia G (eds) (2004) Lithium batteries: science and technology. Kluwer, New York

    Google Scholar 

  21. Van Schalkwijk W, Scrosati B (eds) (2002) Advances in lithium-ion batteries. Kluwer, New York

    Google Scholar 

  22. Balbuena PB, Wang Y (eds) (2004) Lithium-Ion batteries: solid-electrolyte interphase. Imperial College Press, London

    Google Scholar 

  23. Yamamoto O, Wakihara M (1998) Lithium-Ion batteries. Wiley-VCH, New York/Weinheim

    Google Scholar 

  24. Besenhard JO (ed) (1999) Handbook of battery materials. VCH, New York

    Google Scholar 

  25. Linden D, Reddy TB (eds) (2002) Handbook of batteries, 3rd edn. New York, McGraw-Hill

    Google Scholar 

  26. Barthel J, Gores HJ (1994) Solution chemistry: a cutting edge in modern electrochemical technology. In: Mamontov G, Popov AI (eds) Chemistry of nonaqueous electrolyte solutions: current progress. VCH, New York, pp 1–147, Ch. 1

    Google Scholar 

  27. Gores HJ, Barthel J, Zugmann S, Moosbauer D, Amereller M, Hartl R, Maurer A (2011) In: Daniel C, Besenhard JO (eds) Handbook of battery materials, 2nd edn. Wiley-VCH, Weinheim, pp 525–626, Ch. 17

    Google Scholar 

  28. Barthel J, Gores HJ, Neueder R, Schmid A (1999) Electrolyte solutions for technology – new aspects and approaches. Pure Appl Chem 71:1705

    CAS  Google Scholar 

  29. Gores HJ, Barthel J (1980) Conductance of salts at moderate and high concentrations in propylene carbonate-dimethoxyethane mixtures at temperatures from −45 °C to 25 °C. J Solut Chem 9:939

    CAS  Google Scholar 

  30. Krienke H, Barthel J (2000) Ionic fluids. In: Sengers JV et al (eds) Equations of state for fluids and fluid mixtures. Elsevier, Amsterdam

    Google Scholar 

  31. Pu W, He X, Lu J, Jiang C, Wan C (2005) Molar conductivity calculation of Li-ion battery electrolyte based on mode coupling theory. J Chem Phys 123:231105

    Google Scholar 

  32. Krienke H, Barthel J, Holovko MF, Protsykevich I, Kalyushnyi Y (2000) Osmotic and activity coefficients of strongly associated electrolytes over large concentration ranges from chemical model calculations. J Mol Liquids 87:191

    CAS  Google Scholar 

  33. Barthel J, Krienke H, Holovko M, Kapko VI, Protsykevich I (2000) The application of the associative mean spherical approximation in the theory of nonaqueous electrolyte solutions. Cond Mat Phys 3(23):657

    Google Scholar 

  34. Wudy FE, Moosbauer DJ, Multerer M, Schmeer G, Schweiger HG, Stock C, Hauner FP, Suppan HG, Gores HJ (2011) Fast micro-Kelvin resolution thermometer based on NTC thermistors. J Chem Eng Data 56:4823

    CAS  Google Scholar 

  35. Wachter P, Schreiner C, Schweiger HG, Gores HJ (2010) Determination of phase transition points of ionic liquids by combination of thermal analysis and conductivity measurements at very low heating and cooling rates. J Chem Thermodyn 42:900

    CAS  Google Scholar 

  36. Schweiger HG, Wachter P, Simbeck T, Wudy FE, Zugmann S, Gores HG (2010) Multichannel conductivity measurement equipment for efficient thermal and conductive characterization of nonaqueous electrolytes and ionic liquids for lithium ion batteries. J Chem Eng Data 55:178

    Google Scholar 

  37. Wachter P, Schweiger HG, Wudy FE, Gores HJ (2008) Efficient determination of crystallisation and melting points at low cooling and heating rates with novel computer controlled equipment. J Chem Thermodyn 40:1542

    CAS  Google Scholar 

  38. Schweiger HG, Multerer M, Gores HJ (2007) Fast multi channel precision thermometer. IEEE Trans Instr Meas 56(N5):2002

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiner Jakob Gores .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Gores, H.J., Schweiger, HG., Kim, WK. (2014). Optimization of Electrolyte Properties by Simplex Exemplified for Conductivity of Lithium Battery Electrolytes. In: Kreysa, G., Ota, Ki., Savinell, R.F. (eds) Encyclopedia of Applied Electrochemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6996-5_443

Download citation

Publish with us

Policies and ethics