Skip to main content

Electrosynthesis Using Modified Electrodes

  • Reference work entry
  • First Online:
Encyclopedia of Applied Electrochemistry
  • 138 Accesses

Introduction

It has long been known that the chemical composition of an electrode used for an electrochemical synthesis can have a great influence upon the nature and efficiency of the electrode reaction. Although this clearly suggests that the nature of the electrode surface can influence electrochemical behavior, historically little attention was paid to ways to modify the electrode surface. It is now recognized that the selectivity and efficiency can be affected to a major degree by proper pretreatment of the electrode surface. In fact, a well-characterized electrochemical process can sometimes even be diverted into an entirely different direction simply by electrode modification.

Modification Methods

Electrode modification can be carried out by methods that vary greatly. A reaction can be affected simply by addition to the electrolysis solution of a substance that is readily adsorbed onto the electrode surface. Thus, addition of a thiocyanate salt to the medium diverts the anodic...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Khidirov SS, Khibiev KS (2005) Kolbe synthesis on a platinum anode modified with thiocyanate ions. Russ J Electrochem 41:1176–1179

    CAS  Google Scholar 

  2. Ruhe A, Walder L, Scheffold R (1987) Modification of carbon electrodes by vitamin B12 polymers. Makromol Chem 8:225–233

    CAS  Google Scholar 

  3. Raoof JB, Azizi N, Ojani R, Ghodrati S, Abrishamkar M, Chekin F (2011) Synthesis of ZSM-5 zeolite: electrochemical behavior of carbon paste electrode modified with Ni(II)-zeolite and its application for electrocatalytic oxidation of methanol. Int J Hydrogen Energy 36:13295–13300

    CAS  Google Scholar 

  4. Gao Q, Suib SL, Rusling JF (2002) Colloids, helices, and patterned films from heme proteins and manganese oxide. Chem Commun 19:2254–2255

    Google Scholar 

  5. Allongue P, Delamar M, Desbat B, Fagebaume O, Hitmi R, Pinson J, Saveant J-M (1997) Covalent modification of carbon surfaces by aryl radicals generated from the electrochemical reduction of diazonium salts. J Am Chem Soc 119:201–207

    CAS  Google Scholar 

  6. Pinson J, Podvorica F (2005) Attachment of organic layers to conductive or semiconductive surfaces by reduction of diazonium salts. Chem Soc Rev 34:429–439

    CAS  Google Scholar 

  7. Mayers BT, Fry AJ (2006) Construction of catalytic electrodes bearing the triphenylamine nucleus covalently bound to carbon. A halogen dance in protonated aminotriphenylamines. Org Lett 8:411–414

    CAS  Google Scholar 

  8. Combellas C, Delamar M, Kanoufi F, Pinson J, Podvorica FI (2005) Spontaneous grafting of iron surfaces by reduction of aryldiazonium salts in acidic or neutral aqueous solution. Application to the protection of iron against corrosion. Chem Mater 17:3968–3975

    CAS  Google Scholar 

  9. Ham S, Paeng K-J, Park J, Myung N, Kim S-K, Rajeshwar K (2008) Photoinduced synthesis of CdTe nanoparticles using Te-modified gold electrode in poly(vinyl pyrrolidone)-containing electrolyte. J Appl Electrochem 38:203–206

    CAS  Google Scholar 

  10. Choi B, Myung N, Rajeshwar K (2007) Double template electrosynthesis of ZnO nanodot array. Electrochem Commun 9:1592–1595

    CAS  Google Scholar 

  11. Ham S, Jeon S, Lee U, Paeng K-J, Myung N (2008) Photoelectrochemical deposition of CdZnSe thin films on the Se-modified Au electrode. Bull Korean Chem Soc 29:939–942

    CAS  Google Scholar 

  12. Zhao Z, Meng Q, Li P, Cao B (2010) Electrochemical synthesis of 2,2’-dichlorohydrazobenzene from o-chloronitrobenzene on a porous Ni/Fe electrode. Electrochim Acta 56:1094–1098

    Google Scholar 

  13. Kokoh KB, Belgsir EM (2002) Electrosynthesis of furan-2,5-dicarboxaldehyde by programmed potential electrolysis. Tetrahedron Lett 43:229–231

    CAS  Google Scholar 

  14. Kashiwagi Y, Yanagisawa Y, Kurashima F, Anzai J-i, Osa T, Bobbitt JM (1996) Enantioselective electrocatalytic oxidation of racemic alcohols on a TEMPO-modified graphite felt electrode by use of chiral base. Chem Commun 24:2745–2746

    Google Scholar 

  15. Belgsir EM, Schafer HJ (2001) Selective oxidation of carbohydrates on Nafion-TEMPO-modified graphite felt electrodes. Electrochem Commun 3:32–35

    CAS  Google Scholar 

  16. Palmisano G, Mandler D, Ciriminna R, Pagliaro M (2007) Structural insight on organosilica electrodes for waste-free alcohol oxidations. Catal Lett 114:55–58

    CAS  Google Scholar 

  17. Espinal L, Suib SL, Rusling JF (2004) Electrochemical catalysis of styrene epoxidation with films of MnO2 nanoparticles and H2O2. J Am Chem Soc 126:7676–7682

    CAS  Google Scholar 

  18. Vaze A, Rusling JF (2005) Interfacial and mass transport enhancement effects on rates of styrene epoxidation catalyzed by myoglobin films in microemulsions. Faraday Discuss 129:265–274

    CAS  Google Scholar 

  19. Huang J, Fu X, Wang G, Ge Y, Miao Q (2012) A high efficient large-scale asymmetric epoxidation of unfunctionalized olefins employing a novel type of chiral salen Mn(III) immobilized onto layered crystalline aryldiamine modified zinc poly(styrene-phenylvinylphosphonate)-phosphate. J Mol Catal A Chem 357:162–173

    CAS  Google Scholar 

  20. Njue CK, Rusling JF (2002) Organic cyclizations in microemulsions catalyzed by a cobalt corrin-polyion-scaffold on electrodes. Electrochem Commun 4:340–343

    CAS  Google Scholar 

  21. Njue CK, Nuthakki B, Vaze A, Bobbitt JM, Rusling JF (2001) Vitamin B12-mediated electrochemical cyclopropanation of styrene. Electrochem Commun 3:733–736

    CAS  Google Scholar 

  22. Scheffold R, Abrecht S, Orlinski R, Ruf HR, Stamouli P, Tinembart O, Walder L, Weymuth C (1987) Vitamin B12-mediated electrochemical reactions in the synthesis of natural products. Pure Appl Chem 59:363–372

    CAS  Google Scholar 

  23. Gros P, Bergel A (2005) Electrochemically enhanced biosynthesis of gluconic acid. AIChE J 51:989–997

    CAS  Google Scholar 

  24. Sobolov SB, Leonida MD, Bartoszko-Malik A, McKinney F, Kim J, Voivodov KI, Fry AJ (1996) Cross-linked LDH crystals for lactate synthesis coupled to electroenzymatic regeneration of NADH. J Org Chem 61:2125–2128

    CAS  Google Scholar 

  25. Kawabata S, Iwata N, Yoneyama H (2000) Asymmetric synthesis of amino acid using an electrode modified with amino acid oxidase and electron mediator. Chem Lett 110–111

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert J. Fry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Fry, A.J. (2014). Electrosynthesis Using Modified Electrodes. In: Kreysa, G., Ota, Ki., Savinell, R.F. (eds) Encyclopedia of Applied Electrochemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6996-5_365

Download citation

Publish with us

Policies and ethics