Skip to main content

Membrane Technology

  • Reference work entry
  • First Online:
Encyclopedia of Applied Electrochemistry

Definition

Membranes could be considered as layer structures which can separate two fluids (gas or liquid) and which have different permeabilities for these fluids or their components. Depending on structure, the membranes could be classified in dense and porous ones. According to IUPAC, the porous membranes can be distinguished into micropores (pore diameter is <2 nm), mesopores (2 nm < d < 50 nm), and macropores (d > 50 nm), respectively. The dense membranes have no open porosity and are impenetrable for particles in gas molecules.

Dense membranes can be divided into ceramic membranes, metal membranes, and liquid-immobilized membranes. These include materials which allow preferential passage of hydrogen or oxygen, in the form of either ions or atoms. Liquid-immobilized membranes consist of a porous support in which a semipermeable liquid is immobilized which fills the pores completely. Interesting examples are molten salts immobilized in porous steel or ceramic supports,...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bouwmeester HJM, Burggraaf AJ (1996) Dense Ceramic Membranes. In: Gellings PJ, Bouwmeester JM (eds) The CRC handbook of solid state electrochemistry. CRC Press, Boka Raton, pp 481–553

    Google Scholar 

  2. Nernst W (1899) On hydrogen generation (in German) Z. Elektrochemie 6:37–41

    Google Scholar 

  3. Steele BCH (2000) Materials for IT-SOFC stacks. 35 years R&D: the inevitability of gradualness? Solid State Ion 134:3–20

    CAS  Google Scholar 

  4. Alqahtany H, Eng D, Stoukides M (1993) Synthesis gas production from methane over an iron electrode in a solid electrolyte cell. J Electrochem Soc 140:1677–1681

    CAS  Google Scholar 

  5. Teraoka Y, Zhang H M, Furukawa S, Yamazoe M (1985) Oxygen permeation through perovskite-type oxides. Chem Lett 14:1743–1746

    Google Scholar 

  6. Teraoka Y, Nobunaga T, Yamazoe N (1988) Effect of cation substitution on the oxygen semipermeability of perovskite-type oxides. Chem Lett 17:503–506

    Google Scholar 

  7. Dyer PN, Richards RE, Russek SL (2000) Ion transport membrane technology for oxygen separation and syngas production. Solid State Ion 134:21–33

    CAS  Google Scholar 

  8. Wagner C (1975) Equations for transport in solid oxides and sulfides of transition metals. Prog Solid State Chem 10:3–16

    Google Scholar 

  9. Skinner SJ, Kilner JA (2000) Oxygen diffusion and surface exchange in La2−xSrxNiO4+δ. Solid State Ion 135:709–712

    CAS  Google Scholar 

  10. Huang P, Petric A (1996) Superior oxygen ion conductivity of lanthanum gallate doped with strontiom and magnesium. J Electrochem Soc 143:1644

    CAS  Google Scholar 

  11. Ishihara T, Honda M, Nishiguchi H, Takita Y (1997) In: Proceedings of the 5th international symposium. SOFC, Aachen, 2–5 June 1997, p 301

    Google Scholar 

  12. Ruiz-Trejo E, Sirman JD, Baikov Ju M, Kilner JA (1998) Oxygen ion diffusivity, surface exchange and ionic conductivity in single crystal Gadolinia doped Ceria. Solid State Ion 113–115:565–569

    Google Scholar 

  13. De Souza RA, Kilner JA (1998) Oxygen transport in La1−xSrxMn1−yCoyO3±δ perovskites: part I. Oxygen tracer diffusion. Solid State Ion 106:175–187

    Google Scholar 

  14. ten Elshoff JE, Langhorst MHR, Bouwmeester HJM (1997) Chemical diffusion and oxygen exchange of La0.6Sr0.4Co0.6Fe0.4O3−δ. Solid State Ion 99:15–22

    Google Scholar 

  15. Minh NQ (1993) Ceramic fuel cells. J Am Ceram Soc 76:563–588

    CAS  Google Scholar 

  16. Ullmann H, Trofimenko N, Tietz F, Stöver D, Ahmad-Khanlou A (2000) Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes. Solid State Ion 138:79–90

    CAS  Google Scholar 

  17. Nakamura T, Petzow G, Gauckler LJ (1979) Stability of the perovskite phase LaBO3 (B = V, Cr, Mn, Fe, Co, Ni) in reducing atmosphere. I. Experimental results. Mater Res Bull 14:649–659

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Guth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Ullmann, H., Vashook, V., Guth, U. (2014). Membrane Technology. In: Kreysa, G., Ota, Ki., Savinell, R.F. (eds) Encyclopedia of Applied Electrochemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6996-5_312

Download citation

Publish with us

Policies and ethics