Encyclopedia of Applied Electrochemistry

2014 Edition
| Editors: Gerhard Kreysa, Ken-ichiro Ota, Robert F. Savinell

Gas Titration with Solid Electrolytes

  • Jens Zosel
  • Ulrich Guth
Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-6996-5_306



The physicochemical principles of the titration of gases with solid electrolytes (SE) are similar to those used in cells with liquid electrolytes. The gaseous reactant (titrant) is added to the analyte (titrand) in form of a gaseous mixture with known amount or flow or alternatively by SE pumping cells dosing primarily oxygen or hydrogen and changing the amount of given species in the titrand according to Faraday’s law, also called coulometry. The titration end point can be detected principally with potentiometric, amperometric, or conductometric devices.


Early gas titrations based on solid electrolyte devices for end point detection were carried out by Möbius [ 1], using air as the gaseous titrant and a potentiometric cell made of stabilized zirconia for the end point detection. The setup is schematically outlined in Fig. 1.
This is a preview of subscription content, log in to check access.


  1. 1.
    Möbius H-H (1966) Sauerstoffionenleitende Festelektrolyte und ihre Anwendungsmöglichkeiten. Z Phys Chem 231:209–214Google Scholar
  2. 2.
    Yuan D, Kröger FA (1969) Stabilized Zirconia as an oxygen pump. J Electrochem Soc 116:594–600Google Scholar
  3. 3.
    Ullmann H, Teske K, Reetz T (1973) Die Entwicklung elektrochemischer Meßverfahren für die Kontrolle schädlicher Verunreinigungen in Natriumkreisläufen. Kernenergie 16:291–297Google Scholar
  4. 4.
    Vashook V, Zosel J, Guth U (2012) Oxygen solid electrolyte coulometry (OSEC). J Solid State Electrochem 16:3401–3421Google Scholar
  5. 5.
    Park J-H, Blumenthal RN (1989) Electronic transport in 8 mole percent Y203-Zr02. J Electrochem Soc 136:2867–2876Google Scholar
  6. 6.
    Rickert H (1982) Electrochemistry of solids. Springer, Heidelberg, p 101Google Scholar
  7. 7.
    Schelter M, Zosel J, Oelßner W, Guth U, Mertig M (2012) A solid electrolyte sensor for trace gas analysis. Sens Actuators B. doi:10.1016/j.snb.2012.10.111Google Scholar
  8. 8.
    Hartung R (1968) Über galvanische Sauerstoffketten mit Zirkondioxyd-Festelektrolyten und deren gasanalytische Anwendung. Dissertation, GreifswaldGoogle Scholar
  9. 9.
    Zosel J, Gerlach F, Ahlborn K, Guth U, Solbach A, Tuchtenhagen D, Treu C Heelemann H (2011) Characterization of ageing of solid electrolyte sensors by impedance spectroscopy. Proceedings Sensor + Test Conference Nuremberg, Vol. I, 527–531Google Scholar
  10. 10.
    Besson J, Déportes C, Kleitz M (1969) French Patent 1 580 819Google Scholar
  11. 11.
    Haaland DM (1977) Internal-reference solid-electrolyte oxygen sensor. Anal Chem 49:1813–1817Google Scholar
  12. 12.
    Turwitt M, Wienand K, Ullrich K, Asmus T, Dittrich J, Schönauer U, Guth U (2010) European Patent 2226629A1Google Scholar
  13. 13.
    Katahira K, Matsumoto H, Iwahara H, Koidea K, Iwamoto T (2001) A solid electrolyte hydrogen sensor with an electrochemically-supplied hydrogen standard. Sens Actuators B 73:130–134Google Scholar
  14. 14.
    Mascell WC (1987) Inorganic solid state chemically sensitive devices: electrochemical oxygen gas sensors. J Phys E Sci Instrum 20:1156–1168Google Scholar
  15. 15.
    Ullmann H, Teske K (1991) Determination of oxygen activities in melts and solid materials by solid electrolyte cells. Sens Actuators B4:417–423Google Scholar
  16. 16.
    Zosel J, Schelter M, Vashook V,Guth U (2012) Coulometrische Festelektrolyt-Gassensoren für Konzentrationen im ppb-Bereich. 16. GMA/ITG-Fachtagung Sensoren und Messsysteme, Nürnberg 22./23.5.2012, Proceedings, pp 324–331. doi:10.5162/sensoren2012/3.2.4Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Kurt-Schwabe-Institut für Mess- und Sensortechnik e.V. MeinsbergWaldheimGermany
  2. 2.FB Chemie und Lebensmittelchemie, Technische Universität DresdenDresdenGermany