Skip to main content

AFM Studies of Biomolecules

  • Reference work entry
  • First Online:
Encyclopedia of Applied Electrochemistry
  • 418 Accesses

Introduction

Atomic force microscopy (AFM) provides a prime approach to study biomolecules. Because the technique does not require modification of the samples, biological particles can be studied under near-physiological conditions. Structural information is obtained either by imaging or by mechanical manipulation of intramolecular bonding. Furthermore, AFM can be used to study intermolecular interactions, for instance of receptor-ligand pairs. The forces accessible to AFM cover the broad range from low picoNewton to microNewton, allowing to resolve even the breaking of single bonds. Resolution capabilities of AFM imaging are in the low nanometer range, sufficient to provide information at the level of the individual molecules. I will introduce the principle of AFM measurements, provide a brief overview of different types of applications on biomolecules including example experiments, and finally give a short outlook on recent developments in the field.

Principle of AFM

Atomic force...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276:1109–1112

    CAS  Google Scholar 

  2. Forman JR, Clarke J (2007) Mechanical unfolding of proteins: insights into biology, structure and folding. Curr Opin Struct Biol 17:58–66

    CAS  Google Scholar 

  3. Rief M, Clausen-Schaumann H, Gaub HE (1999) Sequence-dependent mechanics of single DNA molecules. Nat Struct Biol 6(4):346–349

    CAS  Google Scholar 

  4. Florin E-L, Moy VT, Gaub HE (1994) Adhesion forces between individual ligand-receptor pairs. Science 264:415–417

    CAS  Google Scholar 

  5. Hinterdorfer P, Dufrêne YF (2006) Detection and localization of single molecular recognition events using atomic force microscopy. Nat Methods 3(5):347–355

    CAS  Google Scholar 

  6. Müller DJ, Helenius J, Alsteens D, Dufrêne YF (2009) Force probing surfaces of living cells to molecular resolution. Nat Chem Biol 5(6):383–390

    Google Scholar 

  7. Evans E (2001) Probing the relation between force – lifetime – and chemistry in single molecular bonds. Annu Rev Biophys Biomol Struct 30:105–128

    CAS  Google Scholar 

  8. Dudko OK, Hummer G, Szabo A (2008) Theory, analysis, and interpretation of single-molecule force spectroscopy experiments. PNAS 105(41):15755–15760

    CAS  Google Scholar 

  9. Lemaire PA, Tessmer I, Craig C, Erie DA, Cole J (2006) Unactivated PKR exists in an open conformation capable of binding nucleotides. Biochemistry 45(30):9074–9084

    CAS  Google Scholar 

  10. Ratcliff GC, Erie DA (2001) A novel single-molecule study to determine protein-protein association constants. J Am Chem Soc 123:5632–5635

    CAS  Google Scholar 

  11. Tessmer I, Yang Y, Du C, Zhai J, Hsieh P, Hingorani MM, Erie DA (2008) Mechanism of MutS searching for DNA mismatches and signaling repair. J Biol Chem 283(52):36646–36654

    CAS  Google Scholar 

  12. Müller DJ, Sass H-J, Müller SA, Büldt G, Engel A (1999) Surface structures of native bacteriorhodopsin depend on the molecular packing arrangement in the membrane. J Mol Biol 285:1903–1909

    Google Scholar 

  13. Fronzcek DN, Quammen C, Wang H, Superfine R, Taylor R, Erie DA, Tessmer I (2011) High accuracy FIONA-AFM hybrid imaging. Ultramicroscopy 111:350–355

    Google Scholar 

  14. Allen S, Davies MC, Roberts CJ, Tendler SJB, Williams PM (1997) Atomic force microscopy in analytical biotechnology. Trends Biotechnol 15(3):101–105

    CAS  Google Scholar 

  15. Costa LT, Thalhammer S, Heckl WM (2004) Atomic force microscopy as a tool in nanobiology – part II: force spectroscopy in genomics and proteomics. Cancer Genomics Proteomics 1:71–76

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid Tessmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Tessmer, I. (2014). AFM Studies of Biomolecules. In: Kreysa, G., Ota, Ki., Savinell, R.F. (eds) Encyclopedia of Applied Electrochemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6996-5_245

Download citation

Publish with us

Policies and ethics