Skip to main content

Magnetic Resonance Spectroscopy

  • Reference work entry
  • First Online:
  • 105 Accesses

Magnetic resonance spectroscopies are methods capable of detecting transitions of spin orientations of electrons or atomic nuclei between states separated energetically under the influence of an external magnetic field. Transitions involving the spin of the nucleus of an atom with a nonzero magnetic moment are studied with nuclear magnetic resonance spectroscopy (NMR), whereas transitions involving the spin of unpaired electrons in paramagnetic samples are investigated with electron spin resonance spectroscopy (ESR) (Frequently this method has been called electron paramagnetic resonance spectroscopy (EPR) because the presence of one or several unpaired electrons being a precondition for this spectroscopy is also closely related to the phenomenon of paramagnetism.) [1]. Both methods are widely employed in analytical chemistry. NMR preferably of protons and 13C-atoms and further selected atoms is presumably the most important method in analytical organic chemistry. ESR is used less...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Compton RG, Waller AM (1988) In: Gale RJ (ed) Spectroelectrochemistry. Plenum, New York, p 349

    Google Scholar 

  2. McKinney TM (1996) In: Bard AJ (ed) Electroanalytical chemistry vol. 19. Marcel Dekker, New York, p 109

    Google Scholar 

  3. Holze R (2003) Recent Res Dev Electrochem 6:111

    Google Scholar 

  4. Wieckowski A (2003) Extended abstracts of the 203rd meeting of the Electrochemical Society, Paris, 27 April–02 May, Ext Abstr 1249

    Google Scholar 

  5. Heinzel A (1985) PhD-dissertation, Universität Oldenburg

    Google Scholar 

  6. Maki AH, Geske DH (1959) Anal Chem 31: 1450; (1959) J Chem Phys 30: 1356; (1960) 33: 825; Geske DH, Maki AH (1960) J Am Chem Soc 82: 2671; (1961) 83: 1852

    Google Scholar 

  7. Kaim W, Ernst S, Kasack V (1990) J Am Chem Soc 112:173

    CAS  Google Scholar 

  8. Ameer MAM, Ghoneam AA (1995) J Electrochem Soc 142:4082

    CAS  Google Scholar 

  9. Holze R (2007) Surface and interface analysis: an electrochemists toolbox. Springer-Verlag, Heidelberg

    Google Scholar 

  10. Allendoerfer RD, Martincheck GA, Bruckenstein S (1975) Anal Chem 47: 890; Allendoerfer RD (1975) J Am Chem Soc 97: 218

    Google Scholar 

  11. Heinzel A, Holze R, Hamann CH, Blum JK (1989) Z Phys Chem NF 160:11

    Google Scholar 

  12. Holze R (1989) Habilitation thesis, Universität Oldenburg

    Google Scholar 

  13. Heinzel A, Holze R, Hamann CH, Blum JK (1989) Electrochim Acta 34:657

    CAS  Google Scholar 

  14. Hamann CH, Holze R, Köleli F (1990) DECHEMA-Monographie 121 297

    Google Scholar 

  15. Holze R, Köleli F, Hamann CH (1989) DECHEMA-Monographie 117 315

    Google Scholar 

  16. Holze R, Hamann CH (1991) Tetrahedron 47:737

    CAS  Google Scholar 

  17. Lippe J (1991) PhD-dissertation, Universität Oldenburg

    Google Scholar 

  18. Lippe J, Holze R (1991) Synth Met 41–43:2927

    Google Scholar 

  19. Holze R, Lippe J (1992) Bull Electrochem 8:516

    CAS  Google Scholar 

  20. Dyson FJ (1955) Phys Rev 98:349

    CAS  Google Scholar 

  21. Wu J, Day JB, Franaszczuk K, Montez B, Oldfield E, Wieckowski A, Vuissoz P-A, Ansermet J-P (1997) J Chem Soc (trans: Faraday) 93 1017

    Google Scholar 

  22. Day JB, Wu J, Oldfield E, Wieckowski A (1998) In: Lorenz WJ, Plieth W (eds) Electrochemical nanotechnology. Wiley-VCH, Weinheim, p 291

    Google Scholar 

  23. Tong YY, Kim HS, Babu PK, Wieckowski A (2002) J Am Chem Soc 124:468

    CAS  Google Scholar 

  24. Tong YY, van der Klink JJ (2003) In: Wieckowski A, Savinova ER, Vayenas CG (eds) Catalysis and electrocatalysis at nanoparticle surfaces. CRC Press, Boca Raton, p 455

    Google Scholar 

  25. Babu PK, Tong YY, Kim HS, Wieckowski A (2001) J Electroanal Chem 524–525:157

    Google Scholar 

  26. McGrath P, Fojas AM, Rush B, Reimer JA, Cairns EJ (2006) Electrochemical society spring meeting 209th, Denver, May 7–11, Ext Abstr #1097

    Google Scholar 

  27. Wagner JB Jr (1991) In: Varma R, Selman JR (eds) Techniques for characterization of electrodes and electrochemical processes. Wiley, New York, p 3

    Google Scholar 

General References and Further Reading: On ESR-Spectroscopy

  • Atherton NM (1993) Principles of electron spin resonance. Ellis Horwood PTR, Prentice Hall/Chichester

    Google Scholar 

  • Kirmse R, Stach J (1985) ESR-Spektroskopie. Akademie-Verlag, Berlin

    Google Scholar 

  • Poole CP Jr (1996) Electron spin resonance. Dover, Mineola

    Google Scholar 

  • Poole CP, Farach HA (1999) Handbook of electron spin resonance (Vol. 1). AIP, New York

    Google Scholar 

  • Poole CP, Farach HA (1999) Handbook of electron spin resonance (Vol. 2). Springer, New York

    Google Scholar 

  • Scheffler K, Stegmann HB (1970) Elektronenspinresonanz. Springer, Berlin

    Google Scholar 

  • Weil JA, Bolton JR (2007) Electron paramagnetic resonance. Wiley, Hoboken

    Google Scholar 

  • Wertz JE, Bolton JR (1986) Electron spin resonance. Chapman & Hall, New York

    Google Scholar 

General References and Further Reading: On NMR-Spectroscopy

  • Akitt JW (1983) NMR and chemistry. Chapman & Hall, New York

    Google Scholar 

  • Becker ED (1980) High resolution NMR. Academic, New York

    Google Scholar 

  • Bovey FA (1988) Nuclear magnetic resonance spectroscopy. Academic, New York

    Google Scholar 

  • Harris RK (1986) Nuclear magnetic resonance spectroscopy. Longman Scientific& Technical, Essex

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Krička .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Krička, M., Holze, R. (2014). Magnetic Resonance Spectroscopy. In: Kreysa, G., Ota, Ki., Savinell, R.F. (eds) Encyclopedia of Applied Electrochemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6996-5_227

Download citation

Publish with us

Policies and ethics