Skip to main content

Green Electrochemistry

  • Reference work entry
  • First Online:
Encyclopedia of Applied Electrochemistry

Introduction

Green chemistry (GC) has been defined as the utilization of a series of principles that reduce or eliminate the use or generation of dangerous substances during the design, fabrication, or application of chemical products [1].

Electrochemistry is naturally suited to conform to most of the principles involved in green chemistry. There are several environmentally favorable features of electrochemical transformations including [24] (a) electrons are intrinsically clean reagents; (b) most of the reactions may take place at room temperature which reduces energy consumption, the risk of corrosion, material failure, and the cost associated to temperature controls; (c) reactions may occur in low or null volatility reaction media (e.g., the use of ionic liquids), and this reduces accidental solvent releases to the atmosphere; (d) electrodes function as heterogeneous catalysts (they are easily separated from the products); (e) when the heterogeneous electron transfer is naturally...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anastas JWP (1998) Green chemistry: theory and practice. Oxford University Press, New York

    Google Scholar 

  2. Matthews MA (2001) Green electrochemistry. Examples and challenges. Pure Appl Chem (IUPAC) 73(8):1305–1308

    CAS  Google Scholar 

  3. Steckhan E, Arns T, Heineman WR, Hilt G, Hoorman D, Jorissen J, Krone L, Lewall B, Putter H (2001) Environmental protection and economization of resources by electroorganic and electroenzymatic syntheses. Chemosphere 43:63–73

    CAS  Google Scholar 

  4. Rajeshwar K, Ibanez JG (1997) Environmental electrochemistry: fundamentals and applications in pollution abatement. San Diego, Academic Press

    Google Scholar 

  5. Frontana-Uribe BA, Little RD, Ibanez JG, Palma A, Vasquez-Medrano R (2010) Organic electrosynthesis: a promising green methodology in organic chemistry. Green Chem 12:2099–2119

    CAS  Google Scholar 

  6. Walsh F (1993) A first course in electrochemical engineering. The Electrochemical Consultancy, Hants (England)

    Google Scholar 

  7. Bakke JM, Hegbom I, Ovreeide E, Aaby K (1994) Nitration of aromatic and heteroaromatic compounds by dinitrogen pentaoxide. Acta Chem Scand 48:1001–1006

    CAS  Google Scholar 

  8. Casadei MA, Moracci FM, Zappia G, Inesi A, Rossi L (1997) Electrogenerated superoxide-activated carbon dioxide. A new mild and safe approach to organic carbamates. J Org Chem 62:6754–6759

    CAS  Google Scholar 

  9. Degner D (1985) In: Weinberg N, Tilak BV (eds.) Techniques of electroorganic synthesis. Part III. Wiley: New York

    Google Scholar 

  10. Tsuda T, Hussey CL (2007) Electrochemical applications of room-temperature ionic liquids. The Electrochemical Society Interface 16(1):42–49

    Google Scholar 

  11. Ohno H (2006) Electrochemical aspects of ionic liquids. New York, John Wiley

    Google Scholar 

  12. Lagrost C, Carrié D, Vaultier M, Hapiot P (2003) Reactivities of some electrogenerated organic cation radicals in room-temperature ionic liquids: toward an alternative to volatile organic solvents? J Phys Chem A 107(5):745–752

    CAS  Google Scholar 

  13. Ibanez JG, Hernandez-Esparza M, Doria-Serrano C, Fregoso-Infante A, Singh MM (2007) Environmental chemistry: fundamentals. New York, Springer

    Google Scholar 

  14. Li J, Prentice G (1997) Electrochemical synthesis of methanol from CO2 in high‐pressure electrolyte. TECHNICAL PAPERS - electrochemical science and technology. J Electrochem Soc 144(12):4284–4288

    CAS  Google Scholar 

  15. Paramo-Garcia U, Avila-Rodriguez M, Garcia-Jimenez MG, Gutierrez-Granados S, Ibanez-Cornejo JG (2006) Electrochemical reduction of hexachlorobenzene in organic and aquo-organic media with Co(II)salen as catalyst. Electroanal 18(9):904–910

    Google Scholar 

  16. Paddon CA, Atobe M, Fuchigami T, He P, Watts P, Haswell SJ, Pritchard GJ, Bull SD, Marken F (2006) Towards paired and coupled electrode reactions for clean organic microreactor electrosyntheses. J Appl Electrochem 36:617–634

    CAS  Google Scholar 

  17. Gomez-Gonzalez A, Ibanez JG, Vasquez-Medrano R, Zavala-Araiza D, Paramo-Garcia U (2009) Electrochemical paired convergent production of ClO2 from NaClO2 and NaClO3. In: electrochemical applications to biology, nanotechnology, and environmental engineering and materials. ECS Transactions 20(1):91–101

    CAS  Google Scholar 

  18. Ibanez JG, Balderas-Hernández P, Garcia-Pintor E, Barba-Gonzalez S, Doria-Serrano MC, Hernaiz-Arce L, Diaz-Perez A, Lozano-Cusi A (2011) Laboratory experiments on the electrochemical remediation of the environment. Part 9: microscale recovery of a soil metal pollutant and its extractant. J Chem Educ 88:1123–1125.

    CAS  Google Scholar 

  19. Rojas-Hernandez A, Rodriguez-Laguna N, Ramirez-Silva MT, Moya-Hernandez R (2012) Distribution diagrams and graphical methods to determine or to use the stoichiometric coefficients of acid–base and complexation reactions. Chap. 13. In: Alessio Innocenti. stoichiometry and research–the importance of quantity in biomedicine. InTech Open Access, Rijeka, Croatia, pp 287–310

    Google Scholar 

  20. Rojas A, Gonzalez I (1986) Relationship of Two-dimensional predominance-zone diagrams with conditional constants for complexation equilibria. Anal Chim Acta 187:279–285

    CAS  Google Scholar 

  21. Allen JS, Fenton SS, Fenton JM, Sundstrom DW (1996) 51st Purdue Ind. Waste conference proceeding. Ann Arbor Press, Chelsea, pp 601–612

    Google Scholar 

  22. Martinez-Huitle CA, Brillas E (2008) Electrochemical alternatives for drinking water disinfection. Angew Chem Int Ed 47:1998–2005

    CAS  Google Scholar 

  23. Cominellis C, Chen G (eds) (2010) Electrochemistry for the environment. New York, Springer

    Google Scholar 

  24. Alcántara MT, Gómez J, Pazos M, Sanromán MA (2008) Combined treatment of PAHs contaminated soils using the sequence extraction with surfactant–electrochemical degradation. Chemosphere 70:1438–1444

    Google Scholar 

  25. Pociecha M, Lestan D (2009) EDTA leaching of Cu contaminated soil using electrochemical treatment of the washing solution. J Hazard Mat 165:533–539

    CAS  Google Scholar 

  26. Ibanez JG, Vazquez-Olavarrieta JL, Hernández-Rivera L, García-Sánchez MA, Garcia-Pintor E (2012) A novel combined electrochemical-magnetic method for water treatment. Water Sci Technol 65(11):2079–2083

    CAS  Google Scholar 

  27. Cardenas-Peña AM, Ibanez JG, Vasquez-Medrano R (2012) Determination of the point of zero charge for electrocoagulation precipitates from an iron anode. Int J Electrochem Sci 7:6142–6153

    Google Scholar 

  28. Genders D, Weinberg N (eds) (1992) Electrochemistry for a cleaner environment. The Electrosynthesis Co, East Amherst, New York

    Google Scholar 

  29. Palomar M (ed) (2005) Applications of analytical chemistry in environmental research. Research Signpost, Kerala, India

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge G. Ibanez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Ibanez, J.G., Fitch, A., Frontana-Uribe, B.A., Vasquez-Medrano, R. (2014). Green Electrochemistry. In: Kreysa, G., Ota, Ki., Savinell, R.F. (eds) Encyclopedia of Applied Electrochemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6996-5_132

Download citation

Publish with us

Policies and ethics