Encyclopedia of Applied Electrochemistry

2014 Edition
| Editors: Gerhard Kreysa, Ken-ichiro Ota, Robert F. Savinell

Green Electrochemistry

  • Jorge G. Ibanez
  • Alanah Fitch
  • Bernardo A. Frontana-Uribe
  • Ruben Vasquez-Medrano
Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-6996-5_132

Introduction

Green chemistry (GC) has been defined as the utilization of a series of principles that reduce or eliminate the use or generation of dangerous substances during the design, fabrication, or application of chemical products [1].

Electrochemistry is naturally suited to conform to most of the principles involved in green chemistry. There are several environmentally favorable features of electrochemical transformations including [2, 3, 4] (a) electrons are intrinsically clean reagents; (b) most of the reactions may take place at room temperature which reduces energy consumption, the risk of corrosion, material failure, and the cost associated to temperature controls; (c) reactions may occur in low or null volatility reaction media (e.g., the use of ionic liquids), and this reduces accidental solvent releases to the atmosphere; (d) electrodes function as heterogeneous catalysts (they are easily separated from the products); (e) when the heterogeneous electron transfer is...

This is a preview of subscription content, log in to check access

References

  1. 1.
    Anastas JWP (1998) Green chemistry: theory and practice. Oxford University Press, New YorkGoogle Scholar
  2. 2.
    Matthews MA (2001) Green electrochemistry. Examples and challenges. Pure Appl Chem (IUPAC) 73(8):1305–1308Google Scholar
  3. 3.
    Steckhan E, Arns T, Heineman WR, Hilt G, Hoorman D, Jorissen J, Krone L, Lewall B, Putter H (2001) Environmental protection and economization of resources by electroorganic and electroenzymatic syntheses. Chemosphere 43:63–73Google Scholar
  4. 4.
    Rajeshwar K, Ibanez JG (1997) Environmental electrochemistry: fundamentals and applications in pollution abatement. San Diego, Academic PressGoogle Scholar
  5. 5.
    Frontana-Uribe BA, Little RD, Ibanez JG, Palma A, Vasquez-Medrano R (2010) Organic electrosynthesis: a promising green methodology in organic chemistry. Green Chem 12:2099–2119Google Scholar
  6. 6.
    Walsh F (1993) A first course in electrochemical engineering. The Electrochemical Consultancy, Hants (England)Google Scholar
  7. 7.
    Bakke JM, Hegbom I, Ovreeide E, Aaby K (1994) Nitration of aromatic and heteroaromatic compounds by dinitrogen pentaoxide. Acta Chem Scand 48:1001–1006Google Scholar
  8. 8.
    Casadei MA, Moracci FM, Zappia G, Inesi A, Rossi L (1997) Electrogenerated superoxide-activated carbon dioxide. A new mild and safe approach to organic carbamates. J Org Chem 62:6754–6759Google Scholar
  9. 9.
    Degner D (1985) In: Weinberg N, Tilak BV (eds.) Techniques of electroorganic synthesis. Part III. Wiley: New YorkGoogle Scholar
  10. 10.
    Tsuda T, Hussey CL (2007) Electrochemical applications of room-temperature ionic liquids. The Electrochemical Society Interface 16(1):42–49Google Scholar
  11. 11.
    Ohno H (2006) Electrochemical aspects of ionic liquids. New York, John WileyGoogle Scholar
  12. 12.
    Lagrost C, Carrié D, Vaultier M, Hapiot P (2003) Reactivities of some electrogenerated organic cation radicals in room-temperature ionic liquids: toward an alternative to volatile organic solvents? J Phys Chem A 107(5):745–752Google Scholar
  13. 13.
    Ibanez JG, Hernandez-Esparza M, Doria-Serrano C, Fregoso-Infante A, Singh MM (2007) Environmental chemistry: fundamentals. New York, SpringerGoogle Scholar
  14. 14.
    Li J, Prentice G (1997) Electrochemical synthesis of methanol from CO2 in high‐pressure electrolyte. TECHNICAL PAPERS - electrochemical science and technology. J Electrochem Soc 144(12):4284–4288Google Scholar
  15. 15.
    Paramo-Garcia U, Avila-Rodriguez M, Garcia-Jimenez MG, Gutierrez-Granados S, Ibanez-Cornejo JG (2006) Electrochemical reduction of hexachlorobenzene in organic and aquo-organic media with Co(II)salen as catalyst. Electroanal 18(9):904–910Google Scholar
  16. 16.
    Paddon CA, Atobe M, Fuchigami T, He P, Watts P, Haswell SJ, Pritchard GJ, Bull SD, Marken F (2006) Towards paired and coupled electrode reactions for clean organic microreactor electrosyntheses. J Appl Electrochem 36:617–634Google Scholar
  17. 17.
    Gomez-Gonzalez A, Ibanez JG, Vasquez-Medrano R, Zavala-Araiza D, Paramo-Garcia U (2009) Electrochemical paired convergent production of ClO2 from NaClO2 and NaClO3. In: electrochemical applications to biology, nanotechnology, and environmental engineering and materials. ECS Transactions 20(1):91–101Google Scholar
  18. 18.
    Ibanez JG, Balderas-Hernández P, Garcia-Pintor E, Barba-Gonzalez S, Doria-Serrano MC, Hernaiz-Arce L, Diaz-Perez A, Lozano-Cusi A (2011) Laboratory experiments on the electrochemical remediation of the environment. Part 9: microscale recovery of a soil metal pollutant and its extractant. J Chem Educ 88:1123–1125.Google Scholar
  19. 19.
    Rojas-Hernandez A, Rodriguez-Laguna N, Ramirez-Silva MT, Moya-Hernandez R (2012) Distribution diagrams and graphical methods to determine or to use the stoichiometric coefficients of acid–base and complexation reactions. Chap. 13. In: Alessio Innocenti. stoichiometry and research–the importance of quantity in biomedicine. InTech Open Access, Rijeka, Croatia, pp 287–310Google Scholar
  20. 20.
    Rojas A, Gonzalez I (1986) Relationship of Two-dimensional predominance-zone diagrams with conditional constants for complexation equilibria. Anal Chim Acta 187:279–285Google Scholar
  21. 21.
    Allen JS, Fenton SS, Fenton JM, Sundstrom DW (1996) 51st Purdue Ind. Waste conference proceeding. Ann Arbor Press, Chelsea, pp 601–612Google Scholar
  22. 22.
    Martinez-Huitle CA, Brillas E (2008) Electrochemical alternatives for drinking water disinfection. Angew Chem Int Ed 47:1998–2005Google Scholar
  23. 23.
    Cominellis C, Chen G (eds) (2010) Electrochemistry for the environment. New York, SpringerGoogle Scholar
  24. 24.
    Alcántara MT, Gómez J, Pazos M, Sanromán MA (2008) Combined treatment of PAHs contaminated soils using the sequence extraction with surfactant–electrochemical degradation. Chemosphere 70:1438–1444Google Scholar
  25. 25.
    Pociecha M, Lestan D (2009) EDTA leaching of Cu contaminated soil using electrochemical treatment of the washing solution. J Hazard Mat 165:533–539Google Scholar
  26. 26.
    Ibanez JG, Vazquez-Olavarrieta JL, Hernández-Rivera L, García-Sánchez MA, Garcia-Pintor E (2012) A novel combined electrochemical-magnetic method for water treatment. Water Sci Technol 65(11):2079–2083Google Scholar
  27. 27.
    Cardenas-Peña AM, Ibanez JG, Vasquez-Medrano R (2012) Determination of the point of zero charge for electrocoagulation precipitates from an iron anode. Int J Electrochem Sci 7:6142–6153Google Scholar
  28. 28.
    Genders D, Weinberg N (eds) (1992) Electrochemistry for a cleaner environment. The Electrosynthesis Co, East Amherst, New YorkGoogle Scholar
  29. 29.
    Palomar M (ed) (2005) Applications of analytical chemistry in environmental research. Research Signpost, Kerala, IndiaGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jorge G. Ibanez
    • 1
  • Alanah Fitch
    • 2
  • Bernardo A. Frontana-Uribe
    • 3
    • 4
  • Ruben Vasquez-Medrano
    • 1
  1. 1.Department of Chemical Engineering and SciencesUniversidad IberoamericanaMéxicoMexico
  2. 2.Department of ChemistryLoyola UniversityChicagoUSA
  3. 3.Centro Conjunto de Investigación en Química SustentableUAEMéx-UNAMTolucaMexico
  4. 4.Instituto de Química UNAMMexicoMexico