Skip to main content

Organic Pollutants, Direct and Mediated Anodic Oxidation

  • Reference work entry
  • First Online:
Encyclopedia of Applied Electrochemistry

Introduction

Oxidative electrochemical technologies offer an alternative solution to many environmental problems in the process industry because electrons provide a versatile, efficient, cost effective, easily automatizable and clean reagent. Thanks to intensive investigations that have improved the electrocatalytic activity and stability of electrode materials and optimized reactor geometry, electrochemical technologies have reached a promising state of development and can be effectively used for disinfection and purification of wastewater polluted with organic compounds [1, 2].

The overall performance of the electrochemical processes is determined by the complex interplay of parameters that may be optimized to obtain an effective and economical incineration of pollutants. The principal factors determining the electrolysis performance will be:

  1. (I)

    Electrode potential and current density: these control which reaction occurs and its rate and commonly determine the efficiency of the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Panizza M, Cerisola G (2009) Direct and mediated anodic oxidation of organic pollutants. Chem Rev 109:6541–6569

    CAS  Google Scholar 

  2. Martínez-Huitle CA, Ferro S (2006) Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem Soc Rev 12:1324–1340

    Google Scholar 

  3. Rodrigo MA, Michaud PA, Duo I, Panizza M, Cerisola G, Comninellis C (2001) Oxidation of 4-chlorophenol at boron-doped diamond electrodes for wastewater treatment. J Electrochem Soc 148:D60–D64

    CAS  Google Scholar 

  4. Steele DF (1990) Electrochemical destruction of toxic organic industrial waste. Platin Met Rev 34:10–14

    CAS  Google Scholar 

  5. Bonfatti F, Ferro S, Lavezzo F, Malacarne M, Lodi G, De Battisti A (2000) Electrochemical incineration of glucose as a model organic substrate. II. Role of active chlorine mediation. J Electrochem Soc 147:592–596

    CAS  Google Scholar 

  6. Panizza M, Cerisola G (2003) Electrochemical oxidation of 2-naphthol with in situ electrogenerated active chlorine. Electrochim Acta 48:1515–1519

    CAS  Google Scholar 

  7. Martinez-Huitle CA, Ferro S, De Battisti A (2005) Electrochemical incineration in the presence of halides. Electrochem Solid-State 8:D35–D39

    CAS  Google Scholar 

  8. Brillas E, Sirés I, Oturan MA (2009) Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem Rev 109:6570–6631

    CAS  Google Scholar 

  9. Ponce de Leon C, Pletcher D (1995) Removal of formaldehyde from aqueous solutions via oxygen reduction using a reticulated vitreous carbon cathode cell. J Appl Electrochem 25:307–314

    CAS  Google Scholar 

  10. Panizza M, Cerisola G (2005) Application of diamond electrodes to electrochemical processes. Electrochim Acta 51:191–199

    CAS  Google Scholar 

  11. Iniesta J, Michaud PA, Panizza M, Cerisola G, Aldaz A, Comninellis C (2001) Electrochemical oxidation of phenol at boron-doped diamond electrode. Electrochim Acta 46:3573–3578

    CAS  Google Scholar 

  12. Cossu R, Polcaro AM, Lavagnolo MC, Mascia M, Palmas S, Renoldi F (1998) Electrochemical treatment of landfill leachate: oxidation at Ti/PbO2 and Ti/SnO2 anodes. Environ Sci Technol 32:3570–3573

    CAS  Google Scholar 

  13. Gherardini L, Michaud PA, Panizza M, Comninellis C, Vatistas N (2001) Electrochemical oxidation of 4-chlorophenol for wastewater treatment. Definition of normalized current efficiency. J Electrochem Soc 148:D78

    CAS  Google Scholar 

  14. Panizza M, Michaud PA, Cerisola G, Comninellis C (2001) Anodic oxidation of 2-naphthol at boron-doped diamond electrodes. J Electroanal Chem 507:206

    CAS  Google Scholar 

  15. Panizza M, Zolezzi M, Nicolella C (2006) Biological and electrochemical oxidation of naphthalene sulfonates in a contaminated site leachate. J Chem Technol Biotechnol 81:225–232

    CAS  Google Scholar 

  16. Anglada A, Urtiaga A, Ortiz I, Mantzavinos D, Diamadopoulos E (2011) Boron-doped diamond anodic treatment of landfill leachate: evaluation of operating variables and formation of oxidation by-products. Water Res 45:828–838

    CAS  Google Scholar 

  17. Anglada A, Urtiaga AM, Ortiz I (2010) Laboratory and pilot plant scale study on the electrochemical oxidation of landfill leachate. J Hazard Mater 181:729–735

    CAS  Google Scholar 

  18. Sirés I, Brillas E, Cerisola G, Panizza M (2008) Comparative depollution of mecoprop aqueous solutions by electrochemical incineration using BDD and PbO2 as high oxidation power anodes. J Electroanal Chem 613:151–159

    Google Scholar 

  19. Iniesta J, Michaud PA, Panizza M, Comninellis C (2001) Electrochemical oxidation of 3-methylpyridine at a boron-doped diamond electrode: application to electroorganic synthesis and wastewater treatment. Electrochem Commun 3:346–351

    CAS  Google Scholar 

  20. Panizza M, Cerisola G (2008) Removal of colour and COD from wastewater containing acid blue 22 by electrochemical oxidation. J Hazard Mater 153:83–88

    CAS  Google Scholar 

  21. Panizza M, Barbucci A, Ricotti R, Cerisola G (2007) Electrochemical degradation of methylene blue. Sep Purif Technol 54:382–387

    CAS  Google Scholar 

  22. Sáez C, Panizza M, Rodrigo MA, Cerisola G (2007) Electrochemical incineration of dyes using a boron-doped diamond anode. J Chem Technol Biotechnol 82:575–581

    Google Scholar 

  23. Rodriguez J, Rodrigo MA, Panizza M, Cerisola G (2009) Electrochemical oxidation of Acid Yellow 1 using diamond anode. J Appl Electrochem 39:2285–2289

    CAS  Google Scholar 

  24. Panizza M, Cerisola G (2008) Electrochemical degradation of methyl red using BDD and PbO2 anodes. Ind Eng Chem Res 47:6816–6820

    CAS  Google Scholar 

  25. Panizza M, Cerisola G (2007) Electrocatalytic materials for the electrochemical oxidation of synthetic dyes. Appl Catal B-Environ 75:95–101

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Panizza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Panizza, M. (2014). Organic Pollutants, Direct and Mediated Anodic Oxidation. In: Kreysa, G., Ota, Ki., Savinell, R.F. (eds) Encyclopedia of Applied Electrochemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6996-5_126

Download citation

Publish with us

Policies and ethics