Encyclopedia of Applied Electrochemistry

Editors: Gerhard Kreysa, Ken-ichiro Ota, Robert F. Savinell

Organic Pollutants in Water Using DSA Electrodes, In-Cell Mediated (via Active Chlorine) Electrochemical Oxidation

DOI: https://doi.org/10.1007/978-1-4419-6996-5_122

Introduction

Toxic and nonbiodegradable organic pollutants, such as phenolic substances, are typically found in various industrial wastewaters, including pulp and paper mill industries, petrochemical refineries, plastics and glue manufacturing, and coke plants [1]. Such wastewaters usually have to be pretreated in order to minimize their organic charge, which is frequently quite toxic and biorecalcitrant. There are several methods of wastewater treatment, including incineration, wet air oxidation, adsorption, biological treatment, oxidation with strong oxidants (H2O2, O3, active chlorine, etc.), or electrochemical oxidation. The choice of the treatment depends, among other things, on cost efficiency, as well as reliability and treatment efficiency.

Electrochemical oxidation processes have proved to be an efficient and versatile technology capable of handling a wide variety of wastewaters [2, 3, 4]. Enhanced efficiencies can be achieved through the use of compact bipolar...

This is a preview of subscription access content, login to check access

References

  1. 1.
    Gattrell M, Kirk DW (1990) The electrochemical oxidation of aqueous phenol carbon electrode. Can J Chem Eng 68(6):997–1003Google Scholar
  2. 2.
    Anglada Á, Urtiaga A, Ortiz I (2009) Contributions of electrochemical oxidation to waste-water treatment: fundamentals and review of applications. J Chem Technol Biotechnol 84(12):1747–1755Google Scholar
  3. 3.
    Rajkumar D, Palanivelu K (2004) Electrochemical treatment of industrial wastewater. J Hazard Mater 113:123–129Google Scholar
  4. 4.
    Comninellis C (1994) Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochim Acta 39(11–12):1857–1862Google Scholar
  5. 5.
    Beer HB (1980) The invention and industrial development of metal anodes. J Electrochem Soc 127(8):303C–307CGoogle Scholar
  6. 6.
    Duby P (1993) The history of progress in dimensionally stable anodes. J Miner Met Mater Soc 45(3):41–43Google Scholar
  7. 7.
    Holden HS, Kolb JM, Holden HS, Kolb JM (1981) Metal anodes. In: Encyclopedia of chemical technology, vol 15. Wiley, New YorkGoogle Scholar
  8. 8.
    O’Leary KJ, Navin TJ (1974) Morphology of dimensionally stable anodes. In: Chlorine bicentennial symposium, San Francisco. p 174Google Scholar
  9. 9.
    Trasatti S, O’Grady WE (1981) Properties and applications of ruthenium oxide based electrodes. In: Gerisher H, Tobias CW (eds) Advances in electrochemistry and electrochemical engineering, vol 12. Wiley, New York, pp 177–261Google Scholar
  10. 10.
    Trasatti S (1980) Electrodes of conductive metal oxides, part A. Elsevier, AmsterdamGoogle Scholar
  11. 11.
    Trasatti S (1981) Electrodes of conductive metal oxides, part B. Elsevier, AmsterdamGoogle Scholar
  12. 12.
    Rolewicz J, Comninellis C, Plattner E, Hinden J (1988) Charactérisation des électrodes de type DSA pour le dégagement de O2-I. L’électrode Ti/IrO2Ta2O5. Electrochim Acta 33(4):573–580Google Scholar
  13. 13.
    Comninellis C (1989) Characterization of DSA-type oxygen evolving anodes. In: Hine F (ed) Performance of electrodes for industrial processes. The Electrochemical Society, PrincetonGoogle Scholar
  14. 14.
    Rodrigo MA, Michaud PA, Duo I, Panizza M, Cerisola G, Comninellis C (2001) Oxidation of 4-chlorophenol at boron-doped diamond electrode for wastewater treatment. J Electrochem Soc 148(5):D60–D64Google Scholar
  15. 15.
    Chatzisymeon E, Dimou A, Mantzavinos D, Katsaounis A (2009) Electrochemical oxidation of model compounds and olive mill wastewater over DSA electrodes: 1. The case of Ti/IrO2 anode. J Hazard Mater 167(1–3):268–274Google Scholar
  16. 16.
    Randtke S (2010) White’s handbook of chlorination and alternative disinfectants. Wiley, HobokenGoogle Scholar
  17. 17.
    Weil I, Morris JC (1949) Kinetic studies on the chloramines. I. The rates of formation of monochloramine, N-chlormethylamine and N-chlordimethylamine. J Am Chem Soc 71(5):1664–1671Google Scholar
  18. 18.
    Qiang Z, Adams CD (2004) Determination of monochloramine formation rate constants with stopped-flow spectrophotometry. Environ Sci Technol 38(5):1435–1444Google Scholar
  19. 19.
    Fair G, Morris J, Chang S, Weil I, Burden RP (1948) The behavior of chlorine as a water disinfectant. J Am Water Work Assoc 40:1051Google Scholar
  20. 20.
    Saguinsin L, Morris J (1975) Disinfection – water and wastewater. Ann Arbor Science, Ann ArborGoogle Scholar
  21. 21.
    Kapałka A, Katsaounis A, Michels NL, Leonidova A, Souentie S, Comninellis C, Udert KM (2010) Ammonia oxidation to nitrogen mediated by electrogenerated active chlorine on Ti/PtOx-IrO2. Electrochem Commun 12(9):1203–1205Google Scholar
  22. 22.
    Lee W, Westerhoff P (2009) Formation of organic chloramines during water disinfection - chlorination versus chloramination. Water Res 43(8):2233–2239Google Scholar
  23. 23.
    Bergmann MEH, Koparal AS (2005) Studies on electrochemical disinfectant production using anodes containing RuO2. J Appl Electrochem 35(12):1321–1329Google Scholar
  24. 24.
    Tasaka A, Tojo T (1985) Anodic oxidation mechanism of hypochlorite ion on platinum electrode in alkaline solution. J Electrochem Soc 132(8):1855–1859Google Scholar
  25. 25.
    Trasatti S (1987) Progress in the understanding of the mechanism of chlorine evolution at oxide electrodes. Electrochim Acta 32(3):369–382Google Scholar
  26. 26.
    Kraft A (2008) Electrochemical water disinfection: a short review. Platin Met Rev 52(3):177–185Google Scholar
  27. 27.
    Bonfatti F, Ferro S, Lavezzo F, Malacarne M, Lodi G, De Battisti A (2000) Electrochemical incineration of glucose as a model organic substrate II. Role of active chlorine mediation. J Electrochem Soc 147(2):592–596Google Scholar
  28. 28.
    Zhou M, Wu Z, Wang D (2002) Electrocatalytic degradation of phenol in acidic and saline wastewater. J Environ Sci Health A Tox Hazard Subst Environ Eng 37(7):1263–1275Google Scholar
  29. 29.
    Iniesta J, González-García J, Expósito E, Montiel V, Aldaz A (2001) Influence of chloride ion on electrochemical degradation of phenol in alkaline medium using bismuth doped and pure PbO2 anodes. Water Res 35(14):3291–3300Google Scholar
  30. 30.
    Panizza M, Cerisola G (2003) Influence of anode material on the electrochemical oxidation of 2-naphthol: part 1. Cyclic voltammetry and potential step experiments. Electrochim Acta 48(23):3491–3497Google Scholar
  31. 31.
    Panizza M, Cerisola G (2003) Electrochemical oxidation of 2-naphthol with in situ electrogenerated active chlorine. Electrochim Acta 48(11):1515–1519Google Scholar
  32. 32.
    Panizza M, Cerisola G (2008) Electrochemical degradation of methyl red using BDD and PbO2 anodes. Ind Eng Chem Res 47(18):6816–6820Google Scholar
  33. 33.
    Panizza M, Cerisola G (2009) Direct and mediated anodic oxidation of organic pollutants. Chem Rev 109(12):6541–6569Google Scholar
  34. 34.
    Martínez-Huitle CA, Andrade LS (2011) Electrocatalysis in wastewater treatment: recent mechanism advances. Quimica Nova 34(5):850–858Google Scholar
  35. 35.
    Martínez-Huitle CA, Ferro S (2006) Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem Soc Rev 35(12):1324–1340Google Scholar
  36. 36.
    Martínez-Huitle CA, Ferro S, De Battisti A (2004) Electrochemical incineration of oxalic acid: role of electrode material. Electrochim Acta 49(22–23 SPEC. ISS.):4027–4034Google Scholar
  37. 37.
    Martínez-Huitle CA, Quiroz MA, Comninellis C, Ferro S, De Battisti A (2004) Electrochemical incineration of chloranilic acid using Ti/IrO2, Pb/PbO2 and Si/BDD electrodes. Electrochim Acta 50(4):949–956Google Scholar
  38. 38.
    Quiroz MA, Reyna S, Martínez-Huitle CA, Ferro S, De Battisti A (2005) Electrocatalytic oxidation of p-nitrophenol from aqueous solutions at Pb/PbO2 anodes. Appl Catal Environ 59(3–4):259–266Google Scholar
  39. 39.
    Chatzisymeon E, Fierro S, Karafyllis I, Mantzavinos D, Kalogerakis N, Katsaounis A (2010) Anodic oxidation of phenol on Ti/IrO2 electrode: experimental studies. Catal Today 151(1–2):185–189Google Scholar
  40. 40.
    Landolt D, Ibl N (1970) On the mechanism of anodic chlorate formation in concentrated NaCl solutions. Electrochim Acta 15(7):1165–1183Google Scholar
  41. 41.
    Landolt D, Ibl N (1972) Anodic chlorate formation on platinized titanium. J Appl Electrochem 2(3):201–210Google Scholar
  42. 42.
    Landolt D, Ibl N (1968) On the mechanism of anodic chlorate formation in dilute NaCl solutions. J Electrochem Soc 115(7):713–720Google Scholar
  43. 43.
    Foerster F (1924) Trans Am Electrochem Soc 46:23Google Scholar
  44. 44.
    Palmas S, Polcaro AM, Vacca A, Mascia M, Ferrara F (2007) Characterization of boron doped diamond during oxidation processes: relationship between electronic structure and electrochemical activity. J Appl Electrochem 37(1):63–70Google Scholar
  45. 45.
    Kraft A, Stadelmann M, Blaschke M, Kreysig D, Sandt B, Schröder F, Rennau J (1999) Electrochemical water disinfection. Part I: hypochlorite production from very dilute chloride solutions. J Appl Electrochem 29(7):861–868Google Scholar
  46. 46.
    Kraft A, Wünsche M, Stadelmann M, Blaschke M (2003) Electrochemical water disinfection. Recent Res Dev Electrochem 6:27–55Google Scholar
  47. 47.
    Mieluch J, Sadkowski A, Wild J, Zoltowski P (1975) Electrochemical oxidation of phenolic compounds in aqueous solutions. Przemysl Chemiczny 54(9):513–516Google Scholar
  48. 48.
    Comninellis C, Nerini A (1995) Anodic oxidation of phenol in the presence of NaCl for wastewater treatment. J Appl Electrochem 25(1):23–28Google Scholar
  49. 49.
    Gotsi M, Kalogerakis N, Psillakis E, Samaras P, Mantzavinos D (2005) Electrochemical oxidation of olive oil mill wastewaters. Water Res 39(17):4177–4187Google Scholar
  50. 50.
    Cossu R, Polcaro AM, Lavagnolo MC, Mascia M, Palmas S, Renoldi F (1998) Electrochemical treatment of landfill leachate: oxidation at Ti/PbO2 and Ti/SnO2 anodes. Environ Sci Technol 32(22):3570–3573Google Scholar
  51. 51.
    Panizza M, Delucchi M, Sirés I (2010) Electrochemical process for the treatment of landfill leachate. J Appl Electrochem 40(10):1721–1727Google Scholar
  52. 52.
    Turro E, Giannis A, Cossu R, Gidarakos E, Mantzavinos D, Katsaounis A (2011) Electrochemical oxidation of stabilized landfill leachate on DSA electrodes. J Hazard Mater 190(1–3):460–465Google Scholar
  53. 53.
    Chiang LC, Chang JE, Wen TC (1995) Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate. Water Res 29(2):671–678Google Scholar
  54. 54.
    Shi Y, Yu H, Xu D, Zheng X (2012) Degradation of landfill leachate by combined three-dimensional electrode and electro-Fenton. Adv Mater Res 347–353:440–443Google Scholar
  55. 55.
    Martínez-Huitle CA, Brillas E (2009) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review. Appl Catal Environ 87(3–4):105–145Google Scholar
  56. 56.
    Catanho M, Malpass GRP, Motheo AJ (2006) Photoelectrochemical treatment of the dye reactive red 198 using DSA® electrodes. Appl Catal Environ 62(3–4):193–200Google Scholar
  57. 57.
    del Río AI, Molina J, Bonastre J, Cases F (2009) Influence of electrochemical reduction and oxidation processes on the decolourisation and degradation of C.I. Reactive Orange 4 solutions. Chemosphere 75(10):1329–1337Google Scholar
  58. 58.
    Panakoulias T, Kalatzis P, Kalderis D, Katsaounis A (2010) Electrochemical degradation of Reactive Red 120 using DSA and BDD anodes. J Appl Electrochem 40(10):1759–1765Google Scholar
  59. 59.
    Aquino JM, Rocha-Filho RC, Bocchi N, Biaggio SR (2010) Electrochemical degradation of the Acid Blue 62 dye on a β-PbO2 anode assessed by the response surface methodology. J Appl Electrochem 40(10):1751–1757Google Scholar
  60. 60.
    Aquino JM, Rocha-Filho RC, Bocchi N, Biaggio SR (2010) Electrochemical degradation of the reactive red 141 dye on a β-PbO2 anode assessed by the response surface methodology. J Braz Chem Soc 21(2):324–330Google Scholar
  61. 61.
    Rajkumar D, Song BJ, Kim JG (2007) Electrochemical degradation of Reactive Blue 19 in chloride medium for the treatment of textile dyeing wastewater with identification of intermediate compounds. Dye Pigment 72(1):1–7Google Scholar
  62. 62.
    Vaghela SS, Jethva AD, Mehta BB, Dave SP, Adimurthy S, Ramachandraiah G (2005) Laboratory studies of electrochemical treatment of industrial azo dye effluent. Environ Sci Technol 39(8):2848–2855Google Scholar
  63. 63.
    De Oliveira GR, Fernandes NS, Melo JVD, Da Silva DR, Urgeghe C, Martínez-Huitle CA (2011) Electrocatalytic properties of Ti-supported Pt for decolorizing and removing dye from synthetic textile wastewaters. Chem Eng J 168(1):208–214Google Scholar
  64. 64.
    Solano AMS, Rocha JHB, Fernandes NS, Da Silva DR, Martinez-Huitle CA (2011) Direct and indirect electrochemical oxidation process for decolourisation treatment of synthetic wastewaters containing dye. Oxid Commun 34(1):218–229Google Scholar
  65. 65.
    Papastefanakis N, Mantzavinos D, Katsaounis A (2010) DSA electrochemical treatment of olive mill wastewater on Ti/RuO2 anode. J Appl Electrochem 40(4):729–737Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Chemical EngineeringUniversity of PatrasPatrasGreece